Iamax
asdBlasIsamax
asdBlasIsamax算子调用示例:
#include <iostream> #include <vector> #include "asdsip.h" #include "acl/acl.h" #include "acl_meta.h" using namespace AsdSip; #define ASD_STATUS_CHECK(err) \ do { \ AsdSip::AspbStatus err_ = (err); \ if (err_ != AsdSip::NO_ERROR) { \ std::cout << "Execute failed." << std::endl; \ exit(-1); \ } \ } while (0) #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,acl初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据复制到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main(int argc, char **argv) { int deviceId = 0; aclrtStream stream; auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); int64_t n = 6; int64_t incx = 1; int64_t xSize = n; int64_t ySize = 1; std::vector<float> tensorInXData; tensorInXData.reserve(xSize); for (int64_t i = 0; i < xSize; i++) { if (i < xSize / 2) { tensorInXData[i] = 1.0 * i; } else { tensorInXData[i] = xSize - 1.0 * i; } } std::vector<int32_t> tensorOutYData; tensorOutYData.reserve(ySize); std::cout << "------- input X -------" << std::endl; for (int64_t i = 0; i < xSize; i++) { std::cout << tensorInXData[i] << " "; } std::cout << std::endl; std::vector<int64_t> xShape = {xSize}; std::vector<int64_t> yShape = {ySize}; aclTensor *inputX = nullptr; aclTensor *outputY = nullptr; void *inputXDeviceAddr = nullptr; void *outputYDeviceAddr = nullptr; ret = CreateAclTensor(tensorInXData, xShape, &inputXDeviceAddr, aclDataType::ACL_FLOAT, &inputX); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(tensorOutYData, yShape, &outputYDeviceAddr, aclDataType::ACL_INT32, &outputY); CHECK_RET(ret == ACL_SUCCESS, return ret); asdBlasHandle handle; asdBlasCreate(handle); size_t lwork = 0; void *buffer = nullptr; asdBlasMakeIamaxPlan(handle); asdBlasGetWorkspaceSize(handle, lwork); std::cout << "lwork = " << lwork << std::endl; if (lwork > 0) { ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } asdBlasSetWorkspace(handle, buffer); asdBlasSetStream(handle, stream); ASD_STATUS_CHECK(asdBlasIsamax(handle, n, inputX, incx, outputY)); asdBlasSynchronize(handle); asdBlasDestroy(handle); ret = aclrtMemcpy(tensorOutYData.data(), ySize * sizeof(int32_t), outputYDeviceAddr, ySize * sizeof(int32_t), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); std::cout << "------- result -------" << std::endl; std::cout << tensorOutYData[0] << std::endl; std::cout << "Execute successfully." << std::endl; aclDestroyTensor(inputX); aclDestroyTensor(outputY); aclrtFree(inputXDeviceAddr); aclrtFree(outputYDeviceAddr); aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
asdBlasIcamax
asdBlasIcamax算子调用示例:
#include <iostream> #include <vector> #include "asdsip.h" #include "acl/acl.h" #include "acl_meta.h" using namespace AsdSip; #define ASD_STATUS_CHECK(err) \ do { \ AsdSip::AspbStatus err_ = (err); \ if (err_ != AsdSip::NO_ERROR) { \ std::cout << "Execute failed." << std::endl; \ exit(-1); \ } \ } while (0) #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,acl初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据复制到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main(int argc, char **argv) { int deviceId = 0; aclrtStream stream; auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); int64_t n = 6; int64_t incx = 1; int64_t xSize = 6; int64_t ySize = 1; std::vector<std::complex<float>> tensorInXData; tensorInXData.reserve(xSize); for (int64_t i = 0; i < xSize; i++) { if (i < xSize / 2) { tensorInXData[i] = {(float)(1.0 * i), (float)(1.0 * i)}; } else { tensorInXData[i] = {(float)(xSize - 1.0 * i), (float)(xSize - 1.0 * i)}; } } std::vector<int32_t> tensorOutYData; tensorOutYData.reserve(ySize); std::cout << "n: " << n << std::endl; std::cout << "------- input x -------" << std::endl; for (int64_t i = 0; i < xSize; i++) { std::cout << tensorInXData[i] << " "; } std::cout << std::endl; std::vector<int64_t> xShape = {xSize}; std::vector<int64_t> yShape = {ySize}; aclTensor *inputX = nullptr; aclTensor *outputY = nullptr; void *inputXDeviceAddr = nullptr; void *outputYDeviceAddr = nullptr; ret = CreateAclTensor(tensorInXData, xShape, &inputXDeviceAddr, aclDataType::ACL_COMPLEX64, &inputX); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(tensorOutYData, yShape, &outputYDeviceAddr, aclDataType::ACL_INT32, &outputY); CHECK_RET(ret == ACL_SUCCESS, return ret); asdBlasHandle handle; asdBlasCreate(handle); size_t lwork = 0; void *buffer = nullptr; asdBlasMakeIamaxPlan(handle); asdBlasGetWorkspaceSize(handle, lwork); std::cout << "lwork = " << lwork << std::endl; if (lwork > 0) { ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } asdBlasSetWorkspace(handle, buffer); asdBlasSetStream(handle, stream); ASD_STATUS_CHECK(asdBlasIcamax(handle, n, inputX, incx, outputY)); asdBlasSynchronize(handle); asdBlasDestroy(handle); ret = aclrtMemcpy(tensorOutYData.data(), ySize * sizeof(int32_t), outputYDeviceAddr, ySize * sizeof(int32_t), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); std::cout << "------- result -------" << std::endl; std::cout << tensorOutYData[0] << std::endl; std::cout << "Execute successfully." << std::endl; aclDestroyTensor(inputX); aclDestroyTensor(outputY); aclrtFree(inputXDeviceAddr); aclrtFree(outputYDeviceAddr); aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: BLAS