Cgemv
asdBlasCgemv算子调用示例:
#include <iostream> #include <vector> #include <complex> #include "asdsip.h" #include "acl/acl.h" #include "acl_meta.h" using namespace AsdSip; #define ASD_STATUS_CHECK(err) \ do { \ AsdSip::AspbStatus err_ = (err); \ if (err_ != AsdSip::NO_ERROR) { \ std::cout << "Execute failed." << std::endl; \ exit(-1); \ } else { \ std::cout << "Execute successfully." << std::endl; \ } \ } while (0) void printTensor(const std::complex<float> *tensorData, int64_t rows, int64_t cols) { for (int64_t i = 0; i < rows; i++) { for (int64_t j = 0; j < cols; j++) { std::cout << tensorData[i * cols + j] << " "; } std::cout << std::endl; } } #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,acl初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据复制到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main(int argc, char **argv) { int deviceId = 0; aclrtStream stream; auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); int64_t m = 3; int64_t n = 3; int64_t lda = m; int incx = 1; int incy = 1; std::complex<float> alpha = std::complex<float>(1.0, 1.0); std::complex<float> beta = std::complex<float>(1.0, 1.0); asdBlasOperation_t trans = asdBlasOperation_t::ASDBLAS_OP_N; int64_t aSize = m * n; int64_t xSize = n; int64_t ySize = m; std::vector<std::complex<float>> tensorInAData; tensorInAData.reserve(aSize); for (int64_t i = 0; i < m; i++) { for (int64_t j = 0; j < n; j++) { tensorInAData[i * n + j] = std::complex<float>(i + 0.0, i + 0.0); } } std::vector<std::complex<float>> tensorInXData; tensorInXData.reserve(xSize); for (int64_t i = 0; i < n; i++) { tensorInXData[i] = std::complex<float>(i + 1.0, 2 + 0.0); } std::vector<std::complex<float>> tensorInYData; tensorInYData.reserve(ySize); for (int64_t i = 0; i < m; i++) { tensorInYData[i] = std::complex<float>(1.0, 1.0); } std::cout << "trans = " << trans << std::endl; std::cout << "alpha = " << alpha << std::endl; std::cout << "beta = " << beta << std::endl; std::cout << "------- input TensorInA -------" << std::endl; printTensor(tensorInAData.data(), m, n); std::cout << "------- input TensorInX -------" << std::endl; printTensor(tensorInXData.data(), 1, n); std::cout << "------- input TensorInY -------" << std::endl; printTensor(tensorInYData.data(), 1, m); std::vector<int64_t> aShape = {m, n}; std::vector<int64_t> xShape = {n}; std::vector<int64_t> yShape = {m}; aclTensor *inputA = nullptr; aclTensor *inputX = nullptr; aclTensor *inputY = nullptr; void *inputADeviceAddr = nullptr; void *inputXDeviceAddr = nullptr; void *inputYDeviceAddr = nullptr; ret = CreateAclTensor(tensorInAData, aShape, &inputADeviceAddr, aclDataType::ACL_COMPLEX64, &inputA); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(tensorInXData, xShape, &inputXDeviceAddr, aclDataType::ACL_COMPLEX64, &inputX); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(tensorInYData, yShape, &inputYDeviceAddr, aclDataType::ACL_COMPLEX64, &inputY); CHECK_RET(ret == ACL_SUCCESS, return ret); asdBlasHandle handle; asdBlasCreate(handle); size_t lwork = 0; void *buffer = nullptr; asdBlasMakeCgemvPlan(handle, trans, m, n, inputY, incy); asdBlasGetWorkspaceSize(handle, lwork); std::cout << "lwork = " << lwork << std::endl; if (lwork > 0) { ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } asdBlasSetWorkspace(handle, buffer); asdBlasSetStream(handle, stream); ASD_STATUS_CHECK(asdBlasCgemv(handle, trans, m, n, alpha, inputA, lda, inputX, incx, beta, inputY, incy)); asdBlasSynchronize(handle); asdBlasDestroy(handle); ret = aclrtMemcpy(tensorInYData.data(), ySize * sizeof(std::complex<float>), inputYDeviceAddr, ySize * sizeof(std::complex<float>), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy y from device to host failed. ERROR: %d\n", ret); return ret); std::cout << "------- output TensorInY -------" << std::endl; printTensor(tensorInYData.data(), 1, m); aclDestroyTensor(inputX); aclDestroyTensor(inputY); aclDestroyTensor(inputA); aclrtFree(inputXDeviceAddr); aclrtFree(inputYDeviceAddr); aclrtFree(inputADeviceAddr); aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: BLAS