Cgemm
asdBlasCgemm算子调用示例:
#include <iostream> #include <vector> #include "asdsip.h" #include "acl/acl.h" #include "acl_meta.h" using namespace AsdSip; #define ASD_STATUS_CHECK(err) \ do { \ AsdSip::AspbStatus err_ = (err); \ if (err_ != AsdSip::NO_ERROR) { \ std::cout << "Execute failed." << std::endl; \ exit(-1); \ } else { \ std::cout << "Execute successfully." << std::endl; \ } \ } while (0) #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,acl初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据复制到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } void printTensor(std::vector<std::complex<float>> tensorData, int64_t rows, int64_t cols) { for (int64_t i = 0; i < rows; i++) { for (int64_t j = 0; j < cols; j++) { std::cout << tensorData[i * cols + j] << " "; } std::cout << std::endl; } } int main(int argc, char **argv) { int deviceId = 0; aclrtStream stream; auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); int m = 3; int k = 3; int n = 3; asdBlasOperation_t transA = asdBlasOperation_t::ASDBLAS_OP_N; asdBlasOperation_t transB = asdBlasOperation_t::ASDBLAS_OP_N; std::complex<float> alpha = std::complex<float>(1.0f, 1.0f); std::complex<float> beta = std::complex<float>(2.0f, 2.0f); int64_t lda = m; int64_t ldb = k; int64_t ldc = m; const int64_t tensorASize = m * k; const int64_t tensorBSize = k * n; const int64_t tensorCSize = m * n; std::vector<std::complex<float>> tensorInAData; tensorInAData.reserve(tensorASize); for (int i = 0; i < tensorASize; i++) { tensorInAData.push_back(std::complex<float>(1.0f, i + 0.0f)); } std::vector<std::complex<float>> tensorInBData; tensorInBData.reserve(tensorBSize); for (int i = 0; i < tensorBSize; i++) { tensorInBData.push_back(std::complex<float>(1.0f, i + 0.0f)); } std::vector<std::complex<float>> tensorInCData; tensorInCData.reserve(tensorCSize); for (int i = 0; i < tensorCSize; i++) { tensorInCData.push_back(std::complex<float>(1.0f, i + 0.0f)); } std::vector<int64_t> matAShape = {m, k}; std::vector<int64_t> matBShape = {k, n}; std::vector<int64_t> matCShape = {m, n}; aclTensor *matA = nullptr; aclTensor *matB = nullptr; aclTensor *matC = nullptr; void *matADeviceAddr = nullptr; void *matBDeviceAddr = nullptr; void *matCDeviceAddr = nullptr; ret = CreateAclTensor<std::complex<float>>( tensorInAData, matAShape, &matADeviceAddr, aclDataType::ACL_COMPLEX64, &matA); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor<std::complex<float>>( tensorInBData, matBShape, &matBDeviceAddr, aclDataType::ACL_COMPLEX64, &matB); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor<std::complex<float>>( tensorInCData, matCShape, &matCDeviceAddr, aclDataType::ACL_COMPLEX64, &matC); CHECK_RET(ret == ACL_SUCCESS, return ret); std::cout << "alpha = " << alpha << std::endl; std::cout << "beta = " << beta << std::endl; std::cout << "------- input TensorInA -------" << std::endl; printTensor(tensorInAData, m, k); std::cout << "------- input TensorInB -------" << std::endl; printTensor(tensorInBData, k, n); asdBlasHandle handle; asdBlasCreate(handle); size_t lwork = 0; void *buffer = nullptr; asdBlasMakeCgemmPlan(handle, transA, transB, m, n, k, lda, ldb, ldc); asdBlasGetWorkspaceSize(handle, lwork); std::cout << "lwork = " << lwork << std::endl; if (lwork > 0) { ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } asdBlasSetWorkspace(handle, buffer); asdBlasSetStream(handle, stream); ASD_STATUS_CHECK(asdBlasCgemm(handle, transA, transB, m, n, k, alpha, matA, lda, matB, ldb, beta, matC, ldc)); asdBlasSynchronize(handle); asdBlasDestroy(handle); ret = aclrtMemcpy(tensorInCData.data(), tensorCSize * sizeof(std::complex<float>), matCDeviceAddr, tensorCSize * sizeof(std::complex<float>), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); std::cout << "------- output TensorInC -------" << std::endl; printTensor(tensorInCData, m, n); aclDestroyTensor(matA); aclDestroyTensor(matB); aclDestroyTensor(matC); aclrtFree(matADeviceAddr); aclrtFree(matBDeviceAddr); aclrtFree(matCDeviceAddr); aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: BLAS