Cgemm
asdBlasCgemm算子调用示例:
#include <iostream>
#include <vector>
#include "asdsip.h"
#include "acl/acl.h"
#include "acl_meta.h"
using namespace AsdSip;
#define ASD_STATUS_CHECK(err) \
do { \
AsdSip::AspbStatus err_ = (err); \
if (err_ != AsdSip::NO_ERROR) { \
std::cout << "Execute failed." << std::endl; \
exit(-1); \
} else { \
std::cout << "Execute successfully." << std::endl; \
} \
} while (0)
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream *stream)
{
// 固定写法,acl初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor)
{
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据复制到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(),
shape.size(),
dataType,
strides.data(),
0,
aclFormat::ACL_FORMAT_ND,
shape.data(),
shape.size(),
*deviceAddr);
return 0;
}
void printTensor(std::vector<std::complex<float>> tensorData, int64_t rows, int64_t cols)
{
for (int64_t i = 0; i < rows; i++) {
for (int64_t j = 0; j < cols; j++) {
std::cout << tensorData[i * cols + j] << " ";
}
std::cout << std::endl;
}
}
int main(int argc, char **argv)
{
int deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
int m = 3;
int k = 3;
int n = 3;
asdBlasOperation_t transA = asdBlasOperation_t::ASDBLAS_OP_N;
asdBlasOperation_t transB = asdBlasOperation_t::ASDBLAS_OP_N;
std::complex<float> alpha = std::complex<float>(1.0f, 1.0f);
std::complex<float> beta = std::complex<float>(2.0f, 2.0f);
int64_t lda = m;
int64_t ldb = k;
int64_t ldc = m;
const int64_t tensorASize = m * k;
const int64_t tensorBSize = k * n;
const int64_t tensorCSize = m * n;
std::vector<std::complex<float>> tensorInAData;
tensorInAData.reserve(tensorASize);
for (int i = 0; i < tensorASize; i++) {
tensorInAData.push_back(std::complex<float>(1.0f, i + 0.0f));
}
std::vector<std::complex<float>> tensorInBData;
tensorInBData.reserve(tensorBSize);
for (int i = 0; i < tensorBSize; i++) {
tensorInBData.push_back(std::complex<float>(1.0f, i + 0.0f));
}
std::vector<std::complex<float>> tensorInCData;
tensorInCData.reserve(tensorCSize);
for (int i = 0; i < tensorCSize; i++) {
tensorInCData.push_back(std::complex<float>(1.0f, i + 0.0f));
}
std::vector<int64_t> matAShape = {m, k};
std::vector<int64_t> matBShape = {k, n};
std::vector<int64_t> matCShape = {m, n};
aclTensor *matA = nullptr;
aclTensor *matB = nullptr;
aclTensor *matC = nullptr;
void *matADeviceAddr = nullptr;
void *matBDeviceAddr = nullptr;
void *matCDeviceAddr = nullptr;
ret = CreateAclTensor<std::complex<float>>(
tensorInAData, matAShape, &matADeviceAddr, aclDataType::ACL_COMPLEX64, &matA);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor<std::complex<float>>(
tensorInBData, matBShape, &matBDeviceAddr, aclDataType::ACL_COMPLEX64, &matB);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor<std::complex<float>>(
tensorInCData, matCShape, &matCDeviceAddr, aclDataType::ACL_COMPLEX64, &matC);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::cout << "alpha = " << alpha << std::endl;
std::cout << "beta = " << beta << std::endl;
std::cout << "------- input TensorInA -------" << std::endl;
printTensor(tensorInAData, m, k);
std::cout << "------- input TensorInB -------" << std::endl;
printTensor(tensorInBData, k, n);
asdBlasHandle handle;
asdBlasCreate(handle);
size_t lwork = 0;
void *buffer = nullptr;
asdBlasMakeCgemmPlan(handle, transA, transB, m, n, k, lda, ldb, ldc);
asdBlasGetWorkspaceSize(handle, lwork);
std::cout << "lwork = " << lwork << std::endl;
if (lwork > 0) {
ret = aclrtMalloc(&buffer, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
asdBlasSetWorkspace(handle, buffer);
asdBlasSetStream(handle, stream);
ASD_STATUS_CHECK(asdBlasCgemm(handle, transA, transB, m, n, k, alpha, matA, lda, matB, ldb, beta, matC, ldc));
asdBlasSynchronize(handle);
asdBlasDestroy(handle);
ret = aclrtMemcpy(tensorInCData.data(),
tensorCSize * sizeof(std::complex<float>),
matCDeviceAddr,
tensorCSize * sizeof(std::complex<float>),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
std::cout << "------- output TensorInC -------" << std::endl;
printTensor(tensorInCData, m, n);
aclDestroyTensor(matA);
aclDestroyTensor(matB);
aclDestroyTensor(matC);
aclrtFree(matADeviceAddr);
aclrtFree(matBDeviceAddr);
aclrtFree(matCDeviceAddr);
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}
父主题: BLAS