swapLast2Axes
swapLast2Axes算子的调用示例:
#include <iostream> #include <vector> #include "asdsip.h" #include "acl/acl.h" #include "acl_meta.h" using namespace AsdSip; #define ASD_STATUS_CHECK(err) \ do { \ AsdSip::AspbStatus err_ = (err); \ if (err_ != AsdSip::NO_ERROR) { \ std::cout << "Execute failed." << std::endl; \ exit(-1); \ } \ } while (0) #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,acl初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T) * 2; // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据复制到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } void printTensor(const float *tensorData, size_t row, size_t col) { for (size_t r = 0; r < row; ++r) { for (size_t c = 0; c < col; ++c) { size_t index = (r * col + c) * 2; std::cout << "(" << int(tensorData[index]) << ", " << int(tensorData[index + 1]) << ") "; } std::cout << "\n"; } } int main(int argc, char **argv) { int deviceId = 0; aclrtStream stream; auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); int64_t row = 3; int64_t col = 2; const int64_t tensorSize = row * col * 2; std::vector<float> tensorInData; tensorInData.reserve(tensorSize); for (int64_t i = 0; i < tensorSize; i++) { tensorInData[i] = 0.0 + i; } std::vector<float> tensorOutData; tensorOutData.reserve(tensorSize); std::vector<int64_t> inShape = {row, col}; std::vector<int64_t> outShape = {col, row}; aclTensor *input = nullptr; aclTensor *output = nullptr; void *inputDeviceAddr = nullptr; void *outputDeviceAddr = nullptr; ret = CreateAclTensor(tensorInData, inShape, &inputDeviceAddr, aclDataType::ACL_COMPLEX64, &input); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(tensorOutData, outShape, &outputDeviceAddr, aclDataType::ACL_COMPLEX64, &output); CHECK_RET(ret == ACL_SUCCESS, return ret); void *workspace = nullptr; size_t lwork = 0; swapLast2AxesGetWorkspaceSize(lwork); std::cout << "lwork = " << lwork << std::endl; if (lwork > 0) { ret = aclrtMalloc(&workspace, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } ASD_STATUS_CHECK(swapLast2Axes(input, output, stream, workspace)); ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); ret = aclrtMemcpy(tensorOutData.data(), tensorSize * sizeof(float), outputDeviceAddr, tensorSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy output tensor from device to host failed. ERROR: %d\n", ret); return ret); std::cout << "row = " << row << ", col = " << col << std::endl; std::cout << "------- Input ------- " << std::endl; printTensor(tensorInData.data(), row, col); std::cout << "------- Output -------" << std::endl; printTensor(tensorOutData.data(), col, row); std::cout << "Execute successfully." << std::endl; aclrtFree(inputDeviceAddr); aclrtFree(outputDeviceAddr); aclDestroyTensor(input); aclDestroyTensor(output); if (lwork > 0) { aclrtFree(workspace); } aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: base