swapLast2Axes
swapLast2Axes算子的调用示例:
#include <iostream>
#include <vector>
#include "asdsip.h"
#include "acl/acl.h"
#include "acl_meta.h"
using namespace AsdSip;
#define ASD_STATUS_CHECK(err) \
do { \
AsdSip::AspbStatus err_ = (err); \
if (err_ != AsdSip::NO_ERROR) { \
std::cout << "Execute failed." << std::endl; \
exit(-1); \
} \
} while (0)
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream *stream)
{
// 固定写法,acl初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor)
{
auto size = GetShapeSize(shape) * sizeof(T) * 2;
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据复制到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(),
shape.size(),
dataType,
strides.data(),
0,
aclFormat::ACL_FORMAT_ND,
shape.data(),
shape.size(),
*deviceAddr);
return 0;
}
void printTensor(const float *tensorData, size_t row, size_t col)
{
for (size_t r = 0; r < row; ++r) {
for (size_t c = 0; c < col; ++c) {
size_t index = (r * col + c) * 2;
std::cout << "(" << int(tensorData[index]) << ", " << int(tensorData[index + 1]) << ") ";
}
std::cout << "\n";
}
}
int main(int argc, char **argv)
{
int deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
int64_t row = 3;
int64_t col = 2;
const int64_t tensorSize = row * col * 2;
std::vector<float> tensorInData;
tensorInData.reserve(tensorSize);
for (int64_t i = 0; i < tensorSize; i++) {
tensorInData[i] = 0.0 + i;
}
std::vector<float> tensorOutData;
tensorOutData.reserve(tensorSize);
std::vector<int64_t> inShape = {row, col};
std::vector<int64_t> outShape = {col, row};
aclTensor *input = nullptr;
aclTensor *output = nullptr;
void *inputDeviceAddr = nullptr;
void *outputDeviceAddr = nullptr;
ret = CreateAclTensor(tensorInData, inShape, &inputDeviceAddr, aclDataType::ACL_COMPLEX64, &input);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(tensorOutData, outShape, &outputDeviceAddr, aclDataType::ACL_COMPLEX64, &output);
CHECK_RET(ret == ACL_SUCCESS, return ret);
void *workspace = nullptr;
size_t lwork = 0;
swapLast2AxesGetWorkspaceSize(lwork);
std::cout << "lwork = " << lwork << std::endl;
if (lwork > 0) {
ret = aclrtMalloc(&workspace, static_cast<int64_t>(lwork), ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
ASD_STATUS_CHECK(swapLast2Axes(input, output, stream, workspace));
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
ret = aclrtMemcpy(tensorOutData.data(),
tensorSize * sizeof(float),
outputDeviceAddr,
tensorSize * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy output tensor from device to host failed. ERROR: %d\n", ret); return ret);
std::cout << "row = " << row << ", col = " << col << std::endl;
std::cout << "------- Input ------- " << std::endl;
printTensor(tensorInData.data(), row, col);
std::cout << "------- Output -------" << std::endl;
printTensor(tensorOutData.data(), col, row);
std::cout << "Execute successfully." << std::endl;
aclrtFree(inputDeviceAddr);
aclrtFree(outputDeviceAddr);
aclDestroyTensor(input);
aclDestroyTensor(output);
if (lwork > 0) {
aclrtFree(workspace);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}
父主题: base