昇腾社区首页
EN
注册

DropOut

产品支持情况

产品

是否支持

Atlas A3 训练系列产品/Atlas A3 推理系列产品

Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件

Atlas 200I/500 A2 推理产品

x

Atlas 推理系列产品 AI Core

Atlas 推理系列产品 Vector Core

x

Atlas 训练系列产品

x

Atlas 200/300/500 推理产品

x

功能说明

提供根据MaskTensor对SrcTensor(源操作数,输入Tensor)进行过滤的功能,得到DstTensor(目的操作数、输出Tensor)。仅支持输入shape为ND格式。

该过滤功能包括两种模式,字节模式比特模式

  • 字节模式

    MaskTensor中存储的数值为布尔类型,每个布尔数值代表是否取用SrcTensor对应位置的数值:如果是,则选取SrcTensor中的数值存入DstTensor;否则,对DstTensor中的对应位置赋值为零。DstTensor,SrcTensor和MaskTensor的shape相同。示例如下:

    SrcTensor=[1,2,3,4,5,6,7,8,9,10]

    MaskTensor=[1,0,1,0,1,0,0,1,1,0](每个数的数据类型为uint8_t)

    DstTensor=[1,0,3,0,5,0,0,8,9,0]

  • 比特模式

    MaskTensor的每个bit数值,代表是否取用SrcTensor对应位置的数值:如果是,则选取SrcTensor中的数值存入DstTensor;否则,对DstTensor中的对应位置赋值为零。SrcTensor和DstTensor的shape相同,假设均为[height , width],MaskTensor的shape为[height , (width / 8)]。示例如下:

    SrcTensor=[1,2,3,4,5,6,7,8]

    MaskTensor=[169](转换为二进制表示为1010 1001)

    DstTensor=[1,0,3,0,5,0,0,8]

    • 特殊情况1:当MaskTensor有效数据非连续存放时,MaskTensor的width轴,为了满足32B对齐,需要填充无效数值,SrcTensor的width轴,需满足32Byte对齐。示例如下:

      SrcTensor=[1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18]

      MaskTensor=[1,0,1,0,1,0,0,1,X,X,1,0,1,0,1,0,0,1,X,X](X为无效数值,假设数据已满足对齐要求,示例数值为二进制形式表示)

      DstTensor=[1,0,3,0,5,0,0,8,11,0, 13, 0, 15, 0, 0,18]

    • 特殊情况2:当MaskTensor有效数据连续存放,maskTensor_size不满足32B对齐时,需要在MaskTensor的尾部补齐32B对齐时,对应SrcTensor的尾部也需要补充无效数据,使得srcTensor_size满足32B对齐。示例如下:

      SrcTensor=[1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18]

      MaskTensor=[1,0,1,0,1,0,0,1, 1, 0, 1, 0, 1, 0, 0, 1,X,X,X,X](X为无效数值,假设数据已满足对齐要求,示例数值为二进制形式表示)

      DstTensor= [1,0,3,0,5,0,0,8, 11, 0, 13, 0, 15, 0, 0, 18]

实现原理

以float类型,ND格式,shape为[srcM, srcN]的SrcTensor,shape为[maskM, maskN]的MaskTensor,比特模式场景为例,描述Dropout高阶API内部算法框图,如下图所示。

图1 Dropout算法框图

计算过程分为如下几步,均在Vector上进行:

  1. GatherMask步骤:对输入的MaskTensor做脏数据清理,使得MaskTensor中只保留有效数据;
  2. Select步骤:根据输入的MaskTensor对SrcTensor做数据选择,被选中的数据位置,保留原始数据,对舍弃的数据位置,设置为0;
  3. Muls步骤:将输出数据每个元素除以keepProb。

函数原型

1
2
template <typename T, bool isInitBitMode = false, uint32_t dropOutMode = 0>
__aicore__ inline void DropOut(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const LocalTensor<uint8_t>& maskLocal, const float keepProb, const DropOutShapeInfo& info)
1
2
template <typename T, bool isInitBitMode = false, uint32_t dropOutMode = 0>
__aicore__ inline void DropOut(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const LocalTensor<uint8_t>& maskLocal, const LocalTensor<uint8_t>& sharedTmpBuffer, const float keepProb, const DropOutShapeInfo& info)

参数说明

表1 模板参数说明

参数名

描述

T

操作数的数据类型。

Atlas A3 训练系列产品/Atlas A3 推理系列产品 ,支持的数据类型为:half/float

Atlas A2 训练系列产品/Atlas 800I A2 推理产品/A200I A2 Box 异构组件 ,支持的数据类型为:half/float

Atlas 推理系列产品 AI Core,支持的数据类型为:half/float

isInitBitMode

在比特模式下,是否需要在接口内部初始化(默认false)。

dropOutMode

选择执行何种输入场景:

0:默认值,由接口根据输入shape推断运行模式,注意,推断不符合预期的场景,需设置对应模式

1:执行字节模式,且maskLocal含有脏数据

2:执行字节模式,且maskLocal不含有脏数据

3:执行比特模式,且maskLocal不含有脏数据

4:执行比特模式,且maskLocal含有脏数据

表2 接口参数说明

参数名称

输入/输出

含义

dstLocal

输出

目的操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

srcLocal

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

srcLocal的数据类型需要与目的操作数保持一致。

maskLocal

输入

存放mask的Tensor,数据类型为uint8_t。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

sharedTmpBuffer

输入

共享缓冲区,用于存放API内部计算产生的临时数据。该方式开发者可以自行管理sharedTmpBuffer内存空间,并在接口调用完成后,复用该部分内存。Tensor的大小应符合对应tiling的要求,配合tiling一起使用。共享缓冲区大小BufferSize的获取方式请参考GetDropOutMaxMinTmpSize

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

keepProb

输入

权重系数,数据类型为float,srcLocal中数据被保留的概率,过滤后的结果会除以权重系数,存放至dstLocal中。

keepProb∈(0,1)

info

输入

DropOutShapeInfo类型,DropOutShapeInfo结构定义如下:

1
2
3
4
5
6
struct DropOutShapeInfo {
__aicore__ DropOutShapeInfo(){};
uint32_t firstAxis = 0;   // srcLocal/maskTensor的height轴元素个数
uint32_t srcLastAxis = 0; // srcLocal的width轴元素个数
uint32_t maskLastAxis = 0;// maskTensor的width轴元素个数(如有数据补齐场景,则为带有脏数据的长度,注意,所有模式的元素个数均为对应Tensor类型下的个数,取值需要大于0,如uint8类型Tensor对应Uint8类型元素个数)
};

返回值说明

约束说明

  • srcTensor和dstTensor的Tensor空间可以复用。
  • srcLocal和dstLocal地址对齐要求请见 :通用约束
  • 仅支持输入shape为ND格式。
  • maskLocal含有脏数据的场景,要求info.maskLastAxis中有效数值的个数,应为2的整数倍。
  • maskLocal含有脏数据的场景,maskLocal中的数据可能会被修改,脏数据可能会被舍弃。

调用示例

完整的算子样例请参考DropOut算子样例

1
2
3
4
5
6
AscendC::DropOutShapeInfo info;
float probValue = 0.8;
info.firstAxis = tilingData.firstAxis / tilingData.tileNum;
info.srcLastAxis = tileLength;
info.maskLastAxis = tileLength;
AscendC::DropOut(yLocal, xLocal, maskLocal, sharedTmpBuffer, probValue, info)