CANN是什么
异构计算架构CANN(Compute Architecture for Neural Networks)是昇腾针对AI场景推出的异构计算架构,向上支持多种AI框架,包括MindSpore、PyTorch、TensorFlow等,向下服务AI处理器与编程,发挥承上启下的关键作用,是提升昇腾AI处理器计算效率的关键平台。同时针对多样化应用场景,提供多层次编程接口,支持用户快速构建基于昇腾平台的AI应用和业务。
总体架构
CANN提供了功能强大、适配性好、可自定义开发的AI异构计算架构。
图1 CANN逻辑架构
- GE图引擎( Graph Engine),是计算图编译和运行的控制中心,提供图优化、图编译管理以及图执行控制等功能。GE通过统一的图开发接口提供多种AI框架的支持,不同AI框架的计算图可以实现到Ascend图的转换。
- Ascend C算子开发语言,是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,最大化匹配用户开发习惯;通过多层接口抽象、自动并行计算、孪生调试等关键技术,极大提高算子开发效率,助力AI开发者低成本完成算子开发和模型调优部署。
- AOL算子加速库(Ascend Operator Library),提供了丰富的深度优化、硬件亲和的高性能算子,包括神经网络(Neural Network,NN)库、线性代数计算库(Basic Linear Algebra Subprograms,BLAS)等,为神经网络在昇腾硬件上加速计算奠定了基础。
- HCCL集合通信库(Huawei Collective Communication Library),是基于昇腾硬件的高性能集合通信库,提供单机多卡以及多机多卡间的数据并行、模型并行集合通信方案。HCCL支持AllReduce、Broadcast、Allgather、ReduceScatter、AlltoAll等通信原语,Ring、Mesh、HD等通信算法,在HCCS、RoCE和PCIe高速链路实现集合通信。
- BiSheng Compiler毕昇编译器,提供Host-Device异构编程编译能力,利用微架构精准编译优化释放昇腾AI处理器极致性能,提供完备二进制调试信息与二进制工具链,支撑AI开发者自主调试调优。
- Runtime运行时,提供了高效的硬件资源管理、媒体数据预处理、单算子加载执行、模型推理等开发接口,供开发者轻松构建高性能人工智能应用。
关键功能特性
- 推理应用开发
CANN提供了在昇腾平台上开发神经网络应用的昇腾计算语言AscendCL(Ascend Computing Language),提供运行资源管理、内存管理、模型加载与执行、算子加载与执行、媒体数据处理等API,实现利用昇腾硬件计算资源、在昇腾CANN平台上进行深度学习推理计算、图形图像预处理、单算子加速计算等能力。简单来说,就是统一的API框架,实现对所有资源的调用。
- 模型训练
CANN针对训练任务提供了完备的支持,针对PyTorch、TensorFlow等开源框架网络模型,CANN提供了模型迁移工具,支持将其快速迁移到昇腾平台。此外,CANN还提供了多种自动化调测工具,支持数据异常检测、融合异常检测、整网数据比对等,帮助开发者高效问题定位。
- 算子开发
CANN提供了超过1400个硬件亲和的高性能算子,可覆盖主流AI框架的算子加速需求,同时,为满足开发者的算法创新需求,CANN开放了自定义算子开发的能力,开发者可根据自身需求选择不同的算子开发方式。