运行应用

样例步骤适用于以下产品。
- Atlas 200/300/500 推理产品
- Atlas 推理系列产品
- Atlas 训练系列产品
模型转换
- 以HwHiAiUser(运行用户)登录开发环境并部署用例。
- 参见《ATC工具使用指南》中的ATC工具使用环境搭建,获取ATC工具并设置环境变量。
- 准备数据。
从以下链接获取ResNet-50网络的权重文件(*.caffemodel)、模型文件(resnet50.prototxt),并以HwHiAiUser(运行用户)将获取的文件上传至开发环境的“vdec_resnet50_classification/caffe_model”目录下。
- 将ResNet-50网络转换为适配昇腾AI处理器的离线模型(*.om文件),转换模型时,需配置色域转换参数aipp.cfg,用于将YUV420SP格式的图片转换为RGB格式的图片。
切换到“vdec_resnet50_classification”目录,执行如下命令。Ascendxxx为使用的昇腾AI处理器版本,请用户自行替换。
atc --model=caffe_model/resnet50.prototxt --weight=caffe_model/resnet50.caffemodel --framework=0 --output=model/resnet50_aipp --soc_version=Ascendxxx --insert_op_conf=caffe_model/aipp.cfg
- “--output”参数:生成的“resnet50_aipp.om”文件存放在“vdec_resnet50_classification/model”目录下。
- 使用atc命令时用户需保证对“vdec_resnet50_classification”目录有写权限。
- 如果无法确定当前设备的soc_version,则在安装NPU驱动包的服务器执行npu-smi info命令进行查询,在查询到的“Name”前增加Ascend信息,例如“Name”对应取值为xxxyy,实际配置的soc_version值为Ascendxxxyy。
- 以HwHiAiUser(运行用户)将开发环境的样例目录及目录下的文件上传到运行环境。
运行应用
- 登录运行环境。
- 准备输入视频码流。
通过链接vdec_h265_1frame_rabbit_1280x720.h265获取输入视频码流文件“vdec_h265_1frame_rabbit_1280x720.h265”,并以HwHiAiUser(运行用户)上传至运行环境的“vdec_resnet50_classification/data”目录下。
- 参照环境变量配置完成运行环境的配置。
- 在“vdec_resnet50_classification”路径下执行如下命令:
python3 ./src/acl_sample.py
- 执行成功后,在屏幕上的关键提示信息示例如下(因打印信息过长,省略部分打印信息)。
init resource stage: init resource stage success [Model] class Model init resource stage: [Model] create model output dataset: [Model] create model output dataset success [Model] class Model init resource stage success [Dvpp] class Dvpp init resource stage: [Dvpp] class Dvpp init resource stage success [Vdec] class Vdec init resource stage: [Vdec] class Vdec init resource stage success [Vdec] forward index:0 [Vdec] create input stream desc success [Vdec] create output pic desc success [Vdec] vdec_send_frame stage success ...... [Vdec] [_callback] _callback exit success [Vdec] [_thread_func] _thread_func out [Vdec] vdec finish!!! [Dvpp] vpc resize stage: [Dvpp] vpc resize stage success [Model] create model input dataset: [Model] create model input dataset success [Model] execute stage: [Model] execute stage success ========= top5 inference results: ========= label:331 prob: 0.910156 label:330 prob: 0.078308 label:104 prob: 0.009209 label:332 prob: 0.003283 label:350 prob: 0.000005 result: class_label[331],top1[0.910156],top5[1.000000] ...... [Sample] release source stage: [Dvpp] class Dvpp release source success [Model] class Model release source success [Vdec] release resource: [Vdec] release resource success [Sample] release source stage success