conv3d
功能说明
在给定6HD格式的Data和FracZ格式的Weight的情况下计算float16的3-D卷积。
接口可以支持bias。
Data tensor 的shape是6HD,即(N, D, C1, H, W, C0);Weight Tensor 的shape是 FracZ,即 (KD*C1*KH*KW, Cout//C0_out, C0_out, C0)。
函数原型
conv3d(x, filter, filter_size, para_dict)
参数说明
- x:3d卷积的FeatureMap,tensor,6HD格式,目前支持float16, int8类型。
- filter:3d卷积的Weight,tensor,FracZ格式,目前支持float16, int8类型。
- filter_size:3d卷积的Weight。
- para_dict:字典格式,包含各种参数,后续参数扩展一般都在para_dict
其中目前在para_dict里要传递的参数:
- dsl_flag:是否支持UB自动融合,True:支持UB自动融合,False:不支持UB自动融合,默认值为False
- bias_tensor:是否支持带bias,默认值为None
- pads:list类型,3d卷积在FeatureMap DHW方向的补边。
- strides:list类型,3d卷积在FeatureMap DHW方向的移动步长。
- dilations:list类型,3d卷积Filter DHW方向的膨胀系数。
- res_dtype:输出的数据类型。
- mad_dtype:执行mad计算的数据类型。
- kernel_name:算子名称。
- group_dict:字典格式,包含支持3d group卷积相关的参数,通过下列计算过程获得。
参数2:cout,Weight的batch维度大小。
参数3:groups,group卷积参数。
参数4:cout0,为tbe_platform.C0_SIZE,默认值为16。
参数5:cin0,为tbe_platform.C0_SIZE,默认值为16。
具体计算公式:
lcm(param1, param2),计算最小公倍数。
mag_factor0 = lcm(fmap_c // groups, cin0) // (fmap_c // groups)
mag_factor1 = lcm(cout // groups, cout0) // (cout // groups)
mag_factor = min(lcm(mag_factor0, mag_factor1), groups)
cin1_g = (mag_factor * fmap_c // groups + cin0 - 1) // cin0
cout_g = (mag_factor * cout // groups + cout0 - 1) // cout0 * cout0
group_dict = {"real_g": (groups + mag_factor - 1) // mag_factor,
"mag_factor": mag_factor,
"cin1_g": cin1_g,
"cout_g": cout_g,
"cin_ori": fmap_c,
"cout_ori": cout}
返回值
res_tensor:表示卷积计算的tensor,即卷积计算的结果输出。
约束说明
此接口暂不支持与其他TBE DSL计算接口混合使用。
支持的型号
Atlas 200/300/500 推理产品
Atlas 训练系列产品
Atlas 推理系列产品(Ascend 310P处理器)
Atlas 200/500 A2推理产品
Atlas A2训练系列产品/Atlas 800I A2推理产品
调用示例
from tbe import tvm from tbe import dsl shape_fmp_ndc1hwc0 = (1, 32, 1, 240, 352, 16) fmp_dtype = "float16" shape_filter = [16, 16, 3, 3, 3] shape_w_frac_z = (27, 1, 16, 16) w_dtype = "float16" data = tvm.placeholder(shape_fmp_ndc1hwc0, name='Fmap', dtype=fmp_dtype) weight = tvm.placeholder(shape_w_frac_z, name='Filter', dtype=w_dtype) bias_tensor = None pads = [1, 1, 1, 1, 1, 1] stride_dhw = [1, 1, 1] res_dtype = "float16" mad_dtype = "float32" kernel_name = "conv3d_1_32_240_352_1_3_3_3_1_16_1_1_1_SAME_NDHWC_1_0" group_dict = {'real_g': 1, 'mag_factor': 1, 'cin1_g': 1, 'cout_g': 16, 'cin_ori': 1, 'cout_ori': 16} dilation_dhw = [1, 1, 1] para_dict = { "dsl_flag": False, "bias_tensor": bias_tensor, "pads": pads, "strides": stride_dhw, "res_dtype": res_dtype, "mad_dtype": mad_dtype, "kernel_name": kernel_name, "group_dict": group_dict, "dilations": dilation_dhw } conv_res = dsl.conv3d(data, weight, shape_filter, para_dict)