更多样例
样例一
下面的样例展示了数学库kernel侧API和Tiling API GetXxxMaxMinTmpSize的配套使用方法,具体流程如下:
Host侧调用Tiling接口,获取所需临时空间的大小,并将其写入tiling data中;kernel侧再读取tiling data,获取相应的临时空间大小,并根据此分配临时空间。
Host侧Tiling API使用样例:
#include <vector>
#include "register/op_def_registry.h"
#include "register/tilingdata_base.h"
#include "tiling/tiling_api.h"
namespace optiling {
BEGIN_TILING_DATA_DEF(AsinCustomTilingData)
TILING_DATA_FIELD_DEF(uint32_t, srcSize);
TILING_DATA_FIELD_DEF(uint32_t, tmpBufferSize);
END_TILING_DATA_DEF;
static ge::graphStatus TilingFunc(gert::TilingContext* context)
{
// Input source shapes.
std::vector<int64_t> srcDims = {16, 128};
uint32_t srcSize = 1;
for (auto dim : srcDims) {
srcSize *= dim;
}
uint32_t typeSize = 2;
ge::Shape shape(srcDims);
uint32_t minValue = 0;
uint32_t maxValue = 0;
AscendC::GetAsinMaxMinTmpSize(shape, typeSize, false, maxValue, minValue);
auto platformInfo = context->GetPlatformInfo();
auto ascendcPlatform = platform_ascendc::PlatformAscendC(platformInfo);
uint64_t tailSize = 0; // ub剩余空间大小
ascendcPlatform.GetCoreMemSize(platform_ascendc::CoreMemType::UB, tailSize); // 本样例中使用完整的ub空间,实际情况下tailSize需要减掉用户已使用的ub空间
auto tmpSize = tailSize >= maxValue ? maxValue : tailSize;
AsinCustomTilingData tiling;
tiling.set_srcSize(srcSize);
tiling.set_tmpBufferSize(tmpSize);
context->SetBlockDim(1);
tiling.SaveToBuffer(context->GetRawTilingData()->GetData(), context->GetRawTilingData()->GetCapacity());
context->GetRawTilingData()->SetDataSize(tiling.GetDataSize());
context->SetTilingKey(1);
return ge::GRAPH_SUCCESS;
}
} // namespace optiling
kernel侧读取tiling data,获取相应的临时空间大小,并根据此分配临时空间:
#include "kernel_operator.h"
template <typename srcType>
class KernelAsin
{
public:
__aicore__ inline KernelAsin() {}
__aicore__ inline void Init(GM_ADDR srcGm, GM_ADDR dstGm, uint32_t srcSize, uint32_t tmpBufferSize)
{
srcGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(srcGm), srcSize);
dstGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(dstGm), srcSize);
pipe.InitBuffer(inQueue, 1, srcSize * sizeof(srcType));
pipe.InitBuffer(outQueue, 1, srcSize * sizeof(srcType));
pipe.InitBuffer(tmpQueue, 1, tmpBufferSize);
bufferSize = srcSize;
}
__aicore__ inline void Process()
{
CopyIn();
Compute();
CopyOut();
}
private:
__aicore__ inline void CopyIn()
{
AscendC::LocalTensor<srcType> srcLocal = inQueue.AllocTensor<srcType>();
AscendC::DataCopy(srcLocal, srcGlobal, bufferSize);
inQueue.EnQue(srcLocal);
}
__aicore__ inline void Compute()
{
AscendC::LocalTensor<srcType> dstLocal = outQueue.AllocTensor<srcType>();
AscendC::LocalTensor<srcType> srcLocal = inQueue.DeQue<srcType>();
AscendC::LocalTensor<uint8_t> sharedTmpBuffer = tmpQueue.AllocTensor<uint8_t>();
AscendC::Asin<srcType, false>(dstLocal, srcLocal, sharedTmpBuffer, bufferSize);
outQueue.EnQue<srcType>(dstLocal);
inQueue.FreeTensor(srcLocal);
tmpQueue.FreeTensor(sharedTmpBuffer);
}
__aicore__ inline void CopyOut()
{
AscendC::LocalTensor<srcType> dstLocal = outQueue.DeQue<srcType>();
AscendC::DataCopy(dstGlobal, dstLocal, bufferSize);
outQueue.FreeTensor(dstLocal);
}
private:
AscendC::GlobalTensor<srcType> srcGlobal;
AscendC::GlobalTensor<srcType> dstGlobal;
AscendC::TPipe pipe;
AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueue;
AscendC::TQue<AscendC::QuePosition::VECCALC, 1> tmpQueue;
AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQueue;
uint32_t bufferSize = 0;
};
extern "C" __global__ __aicore__ void asin_custom(GM_ADDR srcGm, GM_ADDR dstGm, GM_ADDR workspace, GM_ADDR tiling)
{
GET_TILING_DATA(tilingData, tiling);
KernelAsin<half> op;
op.Init(srcGm, dstGm, tilingData.srcSize, tilingData.tmpBufferSize);
if (TILING_KEY_IS(1))
{
op.Process();
}
}
样例二
下面的样例展示了数学库kernel侧API和Tiling API GetXxxTmpBufferFactorSize的配套使用方法,具体流程如下:
Host侧调用Tiling接口,获取maxLiveNodeCnt和extraBuf,并推算算子单次最大计算元素数量,将其写入tiling data中;kernel侧再读取tiling data,获取该值,基于该值分配临时空间。
Host侧Tiling API使用样例:
#include <vector>
#include <cassert>
#include "register/op_def_registry.h"
#include "register/tilingdata_base.h"
#include "tiling/tiling_api.h"
namespace optiling {
BEGIN_TILING_DATA_DEF(AsinCustomTilingData)
TILING_DATA_FIELD_DEF(uint32_t, srcSize);
TILING_DATA_FIELD_DEF(uint32_t, tmpBufferSize);
END_TILING_DATA_DEF;
static ge::graphStatus TilingFunc(gert::TilingContext *context)
{
// Input source shapes.
std::vector<int64_t> srcDims = { 16, 128 };
uint32_t srcSize = 1;
uint32_t srcCurSize = 1;
for (auto dim : srcDims) {
srcSize *= dim;
}
uint32_t typeSize = 2;
auto platformInfo = context->GetPlatformInfo();
auto ascendcPlatform = platform_ascendc::PlatformAscendC(platformInfo);
uint64_t tailSize = 0; // ub剩余空间大小
ascendcPlatform.GetCoreMemSize(platform_ascendc::CoreMemType::UB, tailSize);
uint32_t asinMaxLiveNodeCnt = 0;
uint32_t asinExtraBuf = 0;
uint32_t acosMaxLiveNodeCnt = 0;
uint32_t acosExtraBuf = 0;
AscendC::GetAsinTmpBufferFactorSize(typeSize, asinMaxLiveNodeCnt, asinExtraBuf);
AscendC::GetAcosTmpBufferFactorSize(typeSize, acosMaxLiveNodeCnt, acosExtraBuf);
// tmp的大小需要减去UB上调用api接口输入和输出占用的大小
// 该示例中包括Asin接口的输入输出,以及Acos的输入输出,其中Asin接口的输出作为Acos的输入,因此一共需要3份src的空间大小
auto tmpSize = tailSize - srcSize * typeSize * 3;
assert(tmpSize >= asinExtraBuf);
assert(tmpSize >= acosExtraBuf);
// 计算Asin算子单次最大计算元素数量
if (asinMaliveNodeCnt != 0) {
srcAsinCurSize = (tmpSize - asinExtraBuf) / asinMaxLiveNodeCnt / typeSize;
} else {
srcAsinCurSize = srcSize;
}
// 计算Acos算子单次最大计算元素数量
if (acosMaxLiveNodeCnt != 0) {
srcAcosCurSize = (tmpSize - acosExtraBuf) / acosMaxLiveNodeCnt / typeSize;
} else {
srcAcosCurSize = srcSize;
}
srcCurSize = min(srcAsinCurSize, srcAcosCurSize);
AsinCustomTilingData tiling;
tiling.set_srcSize(srcSize);
tiling.set_srcCurSize(srcCurSize);
tiling.set_tmpBufferSize(tmpSize);
context->SetBlockDim(1);
tiling.SaveToBuffer(context->GetRawTilingData()->GetData(), context->GetRawTilingData()->GetCapacity());
context->GetRawTilingData()->SetDataSize(tiling.GetDataSize());
context->SetTilingKey(1);
return ge::GRAPH_SUCCESS;
}
} // namespace optiling
kernel侧样例:
#include "kernel_operator.h"
template <typename srcType>
class KernelAsin {
public:
__aicore__ inline KernelAsin(){}
__aicore__ inline void Init(GM_ADDR srcGm, GM_ADDR dstGm, uint32_t srcSizeIn, uint32_t srcCurSizeIn, uint32_t tmpBufferSize)
{
srcSize = srcSizeIn;
srcCurSize = srcCurSizeIn;
srcGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(srcGm), srcSize);
dstGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(dstGm), srcSize);
pipe.InitBuffer(inQueue, 1, srcSize * sizeof(srcType));
pipe.InitBuffer(outQueue, 1, srcSize * sizeof(srcType));
pipe.InitBuffer(tmpQueue1, 1, srcCurSize * sizeof(srcType));
pipe.InitBuffer(tmpQueue, 1, tmpBufferSize);
}
__aicore__ inline void Process()
{
CopyIn();
Compute();
CopyOut();
}
private:
__aicore__ inline void CopyIn()
{
AscendC::LocalTensor<srcType> srcLocal = inQueue.AllocTensor<srcType>();
AscendC::DataCopy(srcLocal, srcGlobal, srcSize);
inQueue.EnQue(srcLocal);
}
__aicore__ inline void Compute()
{
AscendC::LocalTensor<srcType> dstLocal = outQueue.AllocTensor<srcType>();
AscendC::LocalTensor<srcType> srcLocal = inQueue.DeQue<srcType>();
AscendC::LocalTensor<uint8_t> sharedTmpBuffer = tmpQueue.AllocTensor<uint8_t>();
AscendC::LocalTensor<srcType> tmpresBuffer = tmpQueue1.AllocTensor<srcType>();
for (int32_t offset = 0; offset < srcSize; offset += srcCurSize) {
AscendC::Asin<srcType, false>(tmpresBuffer, srcLocal[offset], sharedTmpBuffer, srcCurSize);
AscendC::PipeBarrier<PIPE_V>();
AscendC::Acos<srcType, false>(dstLocal[offset], tmpresBuffer, sharedTmpBuffer, srcCurSize);
AscendC::PipeBarrier<PIPE_V>();
}
outQueue.EnQue<srcType>(dstLocal);
inQueue.FreeTensor(srcLocal);
tmpQueue.FreeTensor(sharedTmpBuffer);
}
__aicore__ inline void CopyOut()
{
AscendC::LocalTensor<srcType> dstLocal = outQueue.DeQue<srcType>();
AscendC::DataCopy(dstGlobal, dstLocal, srcSize);
outQueue.FreeTensor(dstLocal);
}
private:
AscendC::GlobalTensor<srcType> srcGlobal;
AscendC::GlobalTensor<srcType> dstGlobal;
AscendC::TPipe pipe;
AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueue;
AscendC::TQue<AscendC::QuePosition::VECCALC, 1> tmpQueue;
AscendC::TQue<AscendC::QuePosition::VECCALC, 1> tmpQueue1;
AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQueue;
uint32_t srcSize, srcCurSize;
};
extern "C" __global__ __aicore__ void kernel_asin_operator(GM_ADDR srcGm, GM_ADDR dstGm, GM_ADDR tiling)
{
GET_TILING_DATA(tilingData, tiling);
KernelAsin<half> op;
op.Init(srcGm, dstGm, tilingData.srcSize, tilingData.srcCurSize, tilingData.tmpBufferSize);
if (TILING_KEY_IS(1)) {
op.Process();
}
}
样例三
下面以Exp接口的关键调用代码为例,辅以调用前后数据打印结果,展示模板参数isReuseSource的使用及其相关影响。
模板参数isReuseSource为bool类型;若isReuseSource为false,则接口内部计算时不复用源操作数的内存空间;若isReuseSource为true,接口内部计算时会复用源操作数的内存空间,存放一些中间结果,节省内存空间,开发者需要注意接口执行完成后,源操作数的内存空间不再是原始值。
- isReuseSource = false
// 调用Exp前dstLocal、srcLocal数值 // dstLocal: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] // srcLocal: [-7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5] AscendC::Exp<float, 15, false>(dstLocal, srcLocal, 16); // 调用Exp后dstLocal、srcLocal数值 // dstLocal: [0.000553084, 0.00150344, 0.00408677, 0.011109, 0.0301974, 0.082085, 0.22313, 0.606531, 1.64872, 4.48169, 12.1825, 33.1155, 90.0171, 244.692, 665.142, 1808.04] // srcLocal: [-7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5]
- isReuseSource = true
// 调用Exp前dstLocal、srcLocal数值 // dstLocal: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] // srcLocal: [-7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5] AscendC::Exp<float, 15, true>(dstLocal, srcLocal, 16); // 调用Exp后dstLocal、srcLocal数值 // dstLocal: [0.000553084, 0.00150344, 0.00408677, 0.011109, 0.0301974, 0.082085, 0.22313, 0.606531, 1.64872, 4.48169, 12.1825, 33.1155, 90.0171, 244.692, 665.142, 1808.04] // srcLocal: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
父主题: 数学库