aclnnCtcLoss
支持的产品型号
- Atlas 推理系列产品(Ascend 310P处理器)。
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
每个算子分为两段式接口,必须先调用“aclnnCtcLossGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnCtcLoss”接口执行计算。
aclnnStatus aclnnCtcLossGetWorkspaceSize(const aclTensor* logProbs, const aclTensor* targets, const aclIntArray* inputLengths, const aclIntArray* targetlengths, int64_t blank, bool zeroInfinity, aclTensor* negLogLikelihoodOut, aclTensor* logAlphaOut, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnCtcLoss(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
功能描述
算子功能:计算连接时序分类损失值。
计算表达式:
定义表示在时刻时真实字符为的概率。(一般地,是经过softmax之后的输出矩阵中的一个元素)。将字符集可以构成的所有序列的集合称为,将中的任意一个序列称为路径,并标记为。的分布为公式(1):
定义多对一(many to one)映射B: ,通过映射B计算得到的条件概率,等于对应于的所有可能路径的概率之和,公式(2):
将找到使值最大的的路径的任务称为解码,公式(3):
aclnnCtcLossGetWorkspaceSize
参数说明:
- logProbs(aclTensor*, 计算输入): 表示输出的对数概率,Device侧的aclTensor。数据类型支持FLOAT、DOUBLE。shape为(),为输入长度,为批处理大小,为类别数,必须大于0,包括空白标识。支持非连续的Tensor。数据格式支持ND。
- targets(aclTensor*, 计算输入): 表示包含目标序列的标签,Device侧的aclTensor。数据类型支持INT64、INT32、BOOL、FLOAT、FLOAT16。当shape为(),为不小于中的最大值的值;或者shape为(SUM()),假设是未填充的而且在1维内级联的。支持非连续的Tensor。数据格式支持ND。
- inputLengths(aclIntArray*, 计算输入):表示输入序列的实际长度,Host侧的aclIntArray。数组长度为,数组中的每个值必须小于等于。
- targetlengths(aclIntArray*, 计算输入):表示目标序列的实际长度,Host侧的aclIntArray。数组长度为,当targets的shape为()时,数组中的每个值必须小于等于。
- blank(int, 计算输入):表示空白标识,Host侧的整型。数值必须小于大于等于0。
- zeroInfinity(bool, 计算输入):表示是否将无限损耗和相关梯度归零,Host侧的bool类型。
- negLogLikelihoodOut(aclTensor*, 计算输出): 表示输出的损失值,Device侧的aclTensor。数据类型FLOAT、DOUBLE,且数据类型必须和logProbs一致。shape大小为()的Tensor。支持非连续的Tensor。数据格式支持ND。
- logAlphaOut(aclTensor*, 计算输出): 表示输入到目标的可能跟踪的概率,Device侧的aclTensor。数据类型支持FLOAT、DOUBLE,且数据类型必须和logProbs一致。shape为3维。支持非连续的Tensor。数据格式支持ND。
- workspaceSize(uint64_t*, 出参): 返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参): 返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的logProbs、targets、inputLengths、targetlengths、negLogLikelihoodOut、logAlphaOut是空指针时。 返回161002(ACLNN_ERR_PARAM_INVALID):1. logProbs、targets、inputLengths、targetlengths的数据类型不在支持的范围之内。 2. logProbs、targets、inputLengths、targetlengths、negLogLikelihoodOut、logAlphaOut的Tensor不满足对应的shape要求,或者inputLengths、targetLengths的ArrayList的长度不满足要求。 3. blank不满足取值范围。
aclnnCtcLoss
参数说明:
- workspace(void*, 入参): 在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnCtcLossGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参): op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_ctc_loss.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> logProbsShape = {12, 4, 5};
std::vector<int64_t> targetsShape = {4, 7};
std::vector<int64_t> negLoglikelihoodOutShape = {4};
std::vector<int64_t> logAlphaOutShape = {4, 12, 16};
void* logProbsDeviceAddr = nullptr;
void* targetsDeviceAddr = nullptr;
void* negLoglikelihoodOutDeviceAddr = nullptr;
void* logAlphaOutDeviceAddr = nullptr;
aclTensor* logProbs = nullptr;
aclTensor* targets = nullptr;
aclIntArray* inputLengths = nullptr;
aclIntArray* targetLengths = nullptr;
aclTensor* negLoglikelihoodOut = nullptr;
aclTensor* logAlphaOut = nullptr;
std::vector<float> logProbsHostData = {
-1.0894, -2.7162, -0.9764, -1.9126, -2.6162,
-2.0684, -2.4871, -2.0866, -1.7205, -0.7187,
-2.4423, -1.2017, -1.4653, -1.1821, -2.5942,
-2.4670, -2.7257, -1.4135, -2.1042, -0.7248,
-3.7759, -1.3742, -1.2549, -1.5807, -1.4562,
-1.3826, -1.8995, -1.8527, -0.9493, -2.8895,
-1.6316, -2.6603, -2.5014, -0.6992, -1.8609,
-1.9269, -2.2350, -0.8073, -1.8906, -1.8947,
-0.3468, -2.5855, -2.0723, -2.7147, -3.6668,
-0.9541, -1.7258, -2.0693, -1.6378, -2.1531,
-3.5386, -3.4830, -0.2532, -2.0557, -3.3261,
-1.1480, -1.8080, -0.8244, -3.2414, -3.1909,
-0.8866, -0.7540, -4.4312, -3.4634, -2.6000,
-1.2785, -1.8347, -3.3122, -0.7620, -2.8349,
-1.4975, -1.3865, -0.9645, -3.8171, -2.0939,
-2.3536, -2.0773, -1.4981, -0.8372, -2.0938,
-1.2186, -0.8285, -2.9399, -2.1159, -2.3620,
-2.3139, -0.6503, -2.7249, -1.2340, -3.7927,
-0.7143, -2.5084, -3.2826, -2.6651, -1.1334,
-1.6965, -1.9728, -2.3849, -1.6052, -0.9554,
-1.6384, -1.2596, -2.1680, -1.8476, -1.3866,
-3.0455, -0.5737, -2.5339, -2.1118, -1.6681,
-2.4675, -2.8842, -0.4329, -3.6266, -1.6925,
-3.1023, -2.7696, -1.2755, -0.6470, -2.4143,
-2.0107, -2.0912, -1.3053, -0.8557, -3.0683,
-1.2872, -3.6523, -1.6703, -2.7596, -0.8063,
-2.4633, -1.2959, -1.6153, -2.3072, -1.0705,
-3.0543, -0.6473, -1.1650, -2.9025, -2.7710,
-3.5519, -2.0400, -1.8667, -1.4289, -0.8050,
-1.4602, -0.7452, -1.5754, -3.1624, -3.1247,
-1.4677, -1.2725, -2.9575, -1.8883, -1.2513,
-1.2164, -1.5894, -2.2217, -2.3714, -1.2110,
-2.0843, -0.6515, -1.4252, -2.9402, -2.7964,
-1.5261, -2.5471, -1.7167, -1.9846, -0.9488,
-1.4847, -1.7093, -1.4095, -1.7293, -1.7675,
-0.9203, -4.2299, -1.8740, -1.4076, -1.6671,
-1.9052, -0.8330, -2.1839, -2.2459, -1.6193,
-2.9108, -1.2114, -1.4616, -1.7297, -1.4330,
-2.2656, -0.7878, -1.8533, -1.8711, -2.0349,
-2.2457, -2.1395, -1.4509, -0.7538, -2.6381,
-0.8078, -2.1054, -2.6703, -1.1108, -3.3867,
-1.7774, -1.8426, -1.9473, -1.3293, -1.3273,
-1.3490, -1.9842, -2.5357, -2.2161, -0.8800,
-1.5412, -1.8003, -2.7603, -0.8606, -2.0066,
-1.8342, -2.2741, -1.8348, -1.5833, -0.9877,
-3.5196, -2.3361, -0.9124, -0.9307, -2.5531,
-1.4862, -1.2153, -1.4453, -3.4462, -1.5625,
-2.6455, -1.4153, -1.3079, -1.1568, -2.2897};
std::vector<int64_t> targetsHostData = {
1, 2, 1, 1, 2, 4, 1,
2, 2, 2, 2, 2, 2, 3,
4, 2, 1, 4, 3, 1, 4,
4, 1, 4, 2, 2, 2, 3};
std::vector<float> negLoglikelihoodOutHostData = {0, 0, 0, 0};
std::vector<float> logAlphaOutHostData = {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
// 创建logProbs aclTensor
ret = CreateAclTensor(logProbsHostData, logProbsShape, &logProbsDeviceAddr, aclDataType::ACL_FLOAT, &logProbs);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建targets aclTensor
ret = CreateAclTensor(targetsHostData, targetsShape, &targetsDeviceAddr, aclDataType::ACL_INT64, &targets);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::vector<int64_t> inputLengthsSizeData = {10,10,10,10};
inputLengths = aclCreateIntArray(inputLengthsSizeData.data(), 4);
CHECK_RET(inputLengths != nullptr, return ACL_ERROR_BAD_ALLOC);
std::vector<int64_t> targetLengthsSizeData = {2, 3, 1, 5};
targetLengths = aclCreateIntArray(targetLengthsSizeData.data(), 4);
CHECK_RET(targetLengths != nullptr, return ACL_ERROR_BAD_ALLOC);
// 创建negLoglikelihoodOut aclTensor
ret = CreateAclTensor(negLoglikelihoodOutHostData, negLoglikelihoodOutShape, &negLoglikelihoodOutDeviceAddr, aclDataType::ACL_FLOAT, &negLoglikelihoodOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建logAlphaOut aclTensor
ret = CreateAclTensor(logAlphaOutHostData, logAlphaOutShape, &logAlphaOutDeviceAddr, aclDataType::ACL_FLOAT, &logAlphaOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnCtcLoss第一段接口
ret = aclnnCtcLossGetWorkspaceSize(logProbs, targets, inputLengths, targetLengths, 0, false, negLoglikelihoodOut, logAlphaOut, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCtcLossGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnCtcLoss第二段接口
ret = aclnnCtcLoss(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCtcLoss failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的negLoglikelihoodOut值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(negLoglikelihoodOutShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), negLoglikelihoodOutDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("negLoglikelihoodOut result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 获取输出的logAlphaOut值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size1 = GetShapeSize(logAlphaOutShape);
std::vector<float> resultData1(size1, 0);
ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), logAlphaOutDeviceAddr, size1 * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size1; i++) {
LOG_PRINT("logAlphaOut result[%ld] is: %f\n", i, resultData1[i]);
}
// 7. 释放aclTensor和IntArray,需要根据具体API的接口定义修改
aclDestroyTensor(logProbs);
aclDestroyTensor(targets);
aclDestroyIntArray(inputLengths);
aclDestroyIntArray(targetLengths);
aclDestroyTensor(negLoglikelihoodOut);
aclDestroyTensor(logAlphaOut);
// 8. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(logProbsDeviceAddr);
aclrtFree(targetsDeviceAddr);
aclrtFree(negLoglikelihoodOutDeviceAddr);
aclrtFree(logAlphaOutDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}