Ceil
功能说明
获取大于或等于x的最小的整数值,即向正无穷取整操作。举例如下:
Ceil(3.9) = 4.0;
Ceil (-3.9) = -3.0。
函数原型
- 通过sharedTmpBuffer入参传入临时空间
1 2
template <typename T, bool isReuseSource = false> __aicore__ inline void Ceil(const LocalTensor<T> &dstTensor, const LocalTensor<T> &srcTensor, const LocalTensor<uint8_t> &sharedTmpBuffer, const uint32_t calCount)
- 接口框架申请临时空间
1 2
template <typename T, bool isReuseSource = false> __aicore__ inline void Ceil(const LocalTensor<T> &dstTensor, const LocalTensor<T> &srcTensor, const uint32_t calCount)
由于该接口的内部实现中涉及复杂的数学计算,需要额外的临时空间来存储计算过程中的中间变量。临时空间支持开发者通过sharedTmpBuffer入参传入和接口框架申请两种方式。
- 通过sharedTmpBuffer入参传入,使用该tensor作为临时空间进行处理,接口框架不再申请。该方式开发者可以自行管理sharedTmpBuffer内存空间,并在接口调用完成后,复用该部分内存,内存不会反复申请释放,灵活性较高,内存利用率也较高。
- 接口框架申请临时空间,开发者无需申请,但是需要预留临时空间的大小。
通过sharedTmpBuffer传入的情况,开发者需要为tensor申请空间;接口框架申请的方式,开发者需要预留临时空间。临时空间大小BufferSize的获取方式如下:通过GetCeilMaxMinTmpSize中提供的接口获取需要预留空间范围的大小。
参数说明
参数名 |
描述 |
---|---|
T |
操作数的数据类型。 |
isReuseSource |
是否允许修改源操作数。该参数预留,传入默认值false即可。 |
参数名 |
输入/输出 |
描述 |
---|---|---|
dstTensor |
输出 |
目的操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas推理系列产品(Ascend 310P处理器)AI Core,支持的数据类型为:half/float |
srcTensor |
输入 |
源操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 源操作数的数据类型需要与目的操作数保持一致。 Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas推理系列产品(Ascend 310P处理器)AI Core,支持的数据类型为:half/float |
sharedTmpBuffer |
输入 |
临时缓存。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 用于Ceil内部复杂计算时存储中间变量,由开发者提供。 临时空间大小BufferSize的获取方式请参考GetCeilMaxMinTmpSize。 |
calCount |
输入 |
实际计算元素个数,calCount∈[0, srcTensor.GetSize()]。 |
返回值
无
支持的型号
Atlas A2训练系列产品/Atlas 800I A2推理产品
Atlas推理系列产品(Ascend 310P处理器)AI Core
约束说明
- 针对Atlas推理系列产品(Ascend 310P处理器)AI Core,输入数据限制在[-2147483647.0, 2147483647.0]范围内。
- 不支持源操作数与目的操作数地址重叠。
- 不支持sharedTmpBuffer与源操作数和目的操作数地址重叠。
- 操作数地址偏移对齐要求请参见通用约束。
调用示例
完整的调用样例请参考更多样例。
Tpipe pipe; TQue<TPosition::VECCALC, 1> tmpQue; pipe.InitBuffer(tmpQue, 1, bufferSize); // bufferSize 通过Host侧tiling参数获取 LocalTensor<uint8_t> sharedTmpBuffer = tmpQue.AllocTensor(); // 输入shape信息为1024, 算子输入的数据类型为half, 实际计算个数为512 Ceil(dstLocal, srcLocal, sharedTmpBuffer, 512);
输入数据(srcLocal): [0.80541134 0.08385705 0.49426016 ... -0.30962205 -0.28947052] 输出数据(dstLocal): [1.0 1.0 1.0 ... 0 0]