aclnnGluBackward
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnGluBackwardGetWorkspaceSize(const aclTensor *gradOut, const aclTensor *self, int64_t dim, const aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnGluBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:GLU(aclnnGlu)的反向计算。
- 计算公式:
假设输出的GLU梯度有两部分组成out=[a_grad, b_grad],那么sig_b=sigmoid(b),a_grad=y_grad*sig_b,b_grad=a_grad*(a-a*sig_b)。
其中y_grad为gradOut,a表示输入张量在指定dim进行均分后的前部分张量,b表示后半部分张量。
aclnnGluBackwardGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnGluBackwardGetWorkspaceSize(const aclTensor *gradOut, const aclTensor *self, int64_t dim, const aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- gradOut:Device侧的aclTensor,表示梯度更新系数,数据类型支持DOUBLE、FLOAT、FLOAT16,数据类型必须与self的一致。shape为(∗1, M, ∗2),其中∗表示self中对应维度,M=N/2,支持非连续的Tensor,数据格式支持ND。
- self:Device侧的aclTensor,数据类型支持DOUBLE、FLOAT、FLOAT16。输入维度必须大于0,且shape必须在入参dim对应的维度上可以整除2,shape为(∗1, N, ∗2),其中∗表示任何数量的附加维,N表示dim指定的维度大小。支持非连续的Tensor,数据格式支持ND。
- dim:表示要拆分输入self的维度,数据类型支持INT64,取值范围[-self.dim(), self.dim()-1]。
- out:Device侧的aclTensor,数据类型支持DOUBLE、FLOAT、FLOAT16,数据类型和shape必须与self一致。支持非连续的Tensor,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的gradOut、self或out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- gradOut、self和out的数据类型不在支持的范围之内。
- dim取值不在支持的范围内。
- self在指定dim对应的维度不能整除2。
- out的shape不等于self的shape。
- gradOut、out的数据类型不与self一致。
- gradOut的shape不满足(*1, M, *2),其中M=N/2,N为self根据dim指定的该维度上的数值。
- gradOut、self、out的维度大于8。
- self的维度等于0。
aclnnGluBackward
- 接口定义:
aclnnStatus aclnnGluBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnGluBackwardGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_glu_backward.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> gradOutShape = {2,4,3};
std::vector<int64_t> selfShape = {2,4,6};
std::vector<int64_t> outShape = {2,4,6};
void* gradOutDeviceAddr = nullptr;
void* selfDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* gradOut = nullptr;
aclTensor* self = nullptr;
aclTensor* out = nullptr;
std::vector<float> gradOutHostData = {
1, 1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1,
1, 1, 1
};
std::vector<float> selfHostData = {
0.2948, 1.6331, 2.3158, -0.6872, 0.3036, 0.1575,
0.2992, 1.0893, -0.1126, 0.1910, -1.3675, 0.5587,
0.4928, 1.4385, 0.6834, -0.6529, 1.0361, -0.6160,
1.2554, -2.0038, 0.5361, -1.4009, -0.7497, -0.8814,
0.4113, 0.7549, -1.2869, -1.4354, 0.6939, 0.2192,
0.3932, 1.8506, -0.7737, 3.6379, -0.9404, -1.1261,
-1.6927, 0.8456, 0.6500, 0.2738, 0.5115, 0.3356,
0.5763, 0.2667, -0.6570, -0.4159, 1.5258, 0.0843
};
std::vector<float> outHostData = {
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0
};
// 创建gradOut aclTensor
ret = CreateAclTensor(gradOutHostData, gradOutShape, &gradOutDeviceAddr, aclDataType::ACL_FLOAT, &gradOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
int64_t dim = -1;
// 3.调用CANN算子库API,需要修改为具体的算子接口
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnGluBackward第一段接口
ret = aclnnGluBackwardGetWorkspaceSize(gradOut, self, dim, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGluBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnGluBackward第二段接口
ret = aclnnGluBackward(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGluBackward failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(gradOut);
aclDestroyTensor(self);
aclDestroyTensor(out);
return 0;
}
父主题: NN类算子接口
