aclnnEmbedding
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnEmbeddingGetWorkspaceSize(const aclTensor *weight, const aclTensor *indices, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnEmbedding(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
算子功能:Embedding计算是将数据集合映射到向量空间,进而将数据进行量化。
假设Embedding的二维权重矩阵为weight(m+1行、n列),对于任意输入索引张量indices(假设1行3列),输出out是一个3行n列张量。如下所示:
aclnnEmbeddingGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnEmbeddingGetWorkspaceSize(const aclTensor *weight, const aclTensor *indices, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- weight:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、INT64、INT32、INT16、INT8、UINT8、BOOL、DOUBLE、COMPLEX64、COMPLEX128、BFLOAT16(仅Atlas A2训练系列产品支持),支持非连续的Tensor,数据格式支持ND。
- indices:Device侧的aclTensor,当indices值越界时,对应行的输出值为随机值。数据类型支持INT64、INT32,支持非连续的Tensor,数据格式支持ND。
- out:Device侧的aclTensor,数据类型同weight,数据格式支持ND,比indices的维度多一。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的weight、indices、out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- weight、indices、out的数据类型和数据格式不在支持的范围内。
- indices和out的shape不满足匹配关系。
- 入参的最大维度超过8。
aclnnEmbedding
- 接口定义:
aclnnStatus aclnnEmbedding(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnEmbeddingGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_embedding.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> weightShape = {10, 3}; std::vector<int64_t> indicesShape = {4}; std::vector<int64_t> outShape = {4, 3}; void* weightDeviceAddr = nullptr; void* indicesDeviceAddr = nullptr; void* outDeviceAddr = nullptr; aclTensor* weight = nullptr; aclTensor* indices = nullptr; aclTensor* out = nullptr; std::vector<float> weightHostData = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,24, 25, 26, 27, 28, 29, 30}; std::vector<int64_t> indicesHostData = {1, 2, 3, 4}; std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // 创建weight aclTensor ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建indices aclTensor ret = CreateAclTensor(indicesHostData, indicesShape, &indicesDeviceAddr, aclDataType::ACL_INT64, &indices); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnEmbedding第一段接口 ret = aclnnEmbeddingGetWorkspaceSize(weight, indices, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnEmbeddingGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnEmbedding第二段接口 ret = aclnnEmbedding(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnEmbedding failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy resultData from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("resultData[%ld] is: %f\n", i, resultData[i]); } // 6. 释放aclTensor,需要根据具体API的接口定义修改 aclDestroyTensor(weight); aclDestroyTensor(indices); aclDestroyTensor(out); return 0; }
父主题: NN类算子接口