aclnnAvgPool2d
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnAvgPool2dGetWorkspaceSize(const aclTensor *self, const aclIntArray *kernelSize, const aclIntArray *strides, const aclIntArray *paddings, const bool ceilMode, const bool countIncludePad, const uint64_t divisorOverride, const int8_t cubeMathType, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnAvgPool2d(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
aclnnAvgPool2dGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnAvgPool2dGetWorkspaceSize(const aclTensor *self, const aclIntArray *kernelSize, const aclIntArray *strides, const aclIntArray *paddings, const bool ceilMode, const bool countIncludePad, const uint64_t divisorOverride, const int8_t cubeMathType, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self:Device侧的aclTensor。NPU上数据类型仅支持FLOAT16和FLOAT。支持非连续的Tensor。支持数据格式为NCHW和CHW。
- kernelSize:Host侧的aclIntArray,整型数组,长度为1(kH=kW)或2(kH, kW),表示池化窗口大小。数据类型支持INT32和INT64。
- strides:Host侧的aclIntArray,整型数组,长度为1(sH=sW)或2(sH, sW),表示池化操作的步长。数据类型支持INT32和INT64。
- paddings:Host侧的aclIntArray,整型数组,长度为1(padH=padW)或2(padH, padW),表示输入的H、W方向上padding补0的层数。数据类型支持INT32和INT64。
- ceilMode:Host侧的布尔值,表示推导的输出out的shape是否向上取整。
- countIncludePad:Host侧的布尔值,计算平均池化时是否包括padding填充的0。
- divisorOverride:数据类型支持UINT64,表示取平均的除数。
- cubeMathType:Host侧的整型,判断Cube单元应该使用哪种计算逻辑进行运算,支持INT8类型的枚举值,枚举值如下:
- 0:KEPP_DTYPE,保持输入的数据类型进行计算。
- 1:ALLOW_FP32_DOWN_PRECISION,允许转换输入数据类型降低精度计算。
- out:Device侧的aclTensor。数据类型、数据格式需要与self一致。
- workSpaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、kernelSize、strides、paddings或out中含有空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- 传入的self或out的数据类型或数据格式不在支持的范围内。
- 传入的self和out数据类型或数据格式不一致。
- 传入的self、kernelSize、strides或out有某维度的值小于0。
aclnnAvgPool2d
- 接口定义:
aclnnStatus aclnnAvgPool2d(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnAvgPool2dGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | #include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_avgpool2d.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 uint64_t divisorOverride = 1; bool countIncludePad = true; bool ceilMode = false; int8_t cubeMathType = 1; std::vector<int64_t> selfShape = {1, 16, 4, 4}; std::vector<int64_t> outShape = {1, 16, 1, 1}; std::vector<int64_t> kernelDims = {4, 4}; std::vector<int64_t> strideDims = {1, 1}; std::vector<int64_t> paddingDims = {0, 0}; void* selfDeviceAddr = nullptr; void *outDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* out = nullptr; std::vector<float> selfHostData(256, 2); std::vector<float> outHostData(16, 0); // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); aclIntArray *kernelSize = aclCreateIntArray(kernelDims.data(), 2); aclIntArray *strides = aclCreateIntArray(strideDims.data(), 2); aclIntArray *paddings = aclCreateIntArray(paddingDims.data(), 2); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnAvgPool2d第一段接口 ret = aclnnAvgPool2dGetWorkspaceSize(self, kernelSize, strides, paddings, ceilMode, countIncludePad, divisorOverride, cubeMathType, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAvgPool2dGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnAvgPool2d第二段接口 ret = aclnnAvgPool2d(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAvgPool2d failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyTensor(out); aclDestroyIntArray(strides); aclDestroyIntArray(paddings); aclDestroyIntArray(kernelSize); return 0; } |
父主题: NN类算子接口