aclnnUniqueConsecutive
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnUniqueConsecutiveGetWorkspaceSize(const aclTensor *self, bool returnInverse, bool returnCounts, int dim, aclTensor *valueOut, aclTensor *inverseOut, aclTensor *countsOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnUniqueConsecutive(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:去除每一个元素后的重复元素。当dim不为空时,去除对应维度上的每一个张量后的重复张量。
aclnnUniqueConsecutiveGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnUniqueConsecutiveGetWorkspaceSize(const aclTensor *self, bool returnInverse, bool returnCounts, int dim, aclTensor *valueOut, aclTensor *inverseOut, aclTensor *countsOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、DOUBLE、INT8、INT16、INT32、INT64、UINT8、UINT16、UINT32、UINT64、COMPLEX64、COMPLEX128、BOOL,数据格式支持ND。
- returnInverse:Host侧的布尔型,数据类型支持BOOL,表示是否返回self中各元素在valueOut中对应元素的位置下标。若为True则返回,False则不返回。
- returnCounts:Host侧的布尔型,数据类型支持BOOL,表示是否返回valueOut中各元素在self中连续重复出现的次数。若为True则返回,False则不返回。
- dim:Host侧的整型,数据类型支持INT64,表示去重的维度,取值范围为[-self.dim(), self.dim())。
- valueOut:Device侧的aclTensor,第一个输出张量,返回消除连续重复元素后的结果。数据类型支持FLOAT、FLOAT16、DOUBLE、INT8、INT16、INT32、INT64、UINT8、UINT16、UINT32、UINT64、COMPLEX64、COMPLEX128、BOOL,数据格式支持ND。
- inverseOut:Device侧的aclTensor,第二个输出张量,当returnInverse为True时有意义,返回self中各元素在valueOut中对应元素的位置下标,数据类型支持INT64,数据格式支持ND。
- countsOut:Device侧的aclTensor,第三个输出张量,当returnCounts为True时有意义,返回valueOut中各元素在self中连续重复出现的次数,数据类型支持INT64,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、valueOut、inverseOut、countsOut是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self的数据类型不在支持的范围之内。
- self和valueOut的数据类型不一致。
- inverseOut或countsOut的数据类型不在支持的范围之内。
- inverseOut和countsOut的数据类型不一致。
aclnnUniqueConsecutive
- 接口定义:
aclnnStatus aclnnUniqueConsecutive(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnUniqueConsecutiveGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_unique_consecutive.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {4, 2};
std::vector<int64_t> valueShape = {8};
std::vector<int64_t> inverseShape = {4, 2};
std::vector<int64_t> countsShape = {8};
void* selfDeviceAddr = nullptr;
void* valueDeviceAddr = nullptr;
void* inverseDeviceAddr = nullptr;
void* countsDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* valueOut = nullptr;
aclTensor* inverseOut = nullptr;
aclTensor* countsOut = nullptr;
std::vector<float> selfHostData = {0, 1, 1, 3, 3, 1, 1, 3};
std::vector<float> valueHostData = {0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int64_t> inverseHostData = {0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int64_t> countsHostData = {0, 0, 0, 0, 0, 0, 0, 0};
bool returnInverse = false;
bool returnCounts = false;
int64_t dim = 0;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建valueOut aclTensor
ret = CreateAclTensor(valueHostData, valueShape, &valueDeviceAddr, aclDataType::ACL_FLOAT, &valueOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建inverseOut aclTensor
ret = CreateAclTensor(inverseHostData, inverseShape, &inverseDeviceAddr, aclDataType::ACL_INT64, &inverseOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建countsOut aclTensor
ret = CreateAclTensor(countsHostData, countsShape, &countsDeviceAddr, aclDataType::ACL_INT64, &countsOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3.调用CANN算子库API,需要修改为具体的算子接口
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnUniqueConsecutive第一段接口
ret = aclnnUniqueConsecutiveGetWorkspaceSize(self, returnInverse, returnCounts, dim, valueOut, inverseOut, countsOut, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnUniqueConsecutiveGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnUniqueConsecutive第二段接口
ret = aclnnUniqueConsecutive(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnUniqueConsecutive failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(valueShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), valueDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(valueOut);
aclDestroyTensor(inverseOut);
aclDestroyTensor(countsOut);
return 0;
}
父主题: NN类算子接口