aclnnSmoothL1LossBackward
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnSmoothL1LossBackwardGetWorkspaceSize(const aclTensor *gradOut, const aclTensor *self, const aclTensor *target, int64_t reduction, float beta, aclTensor *gradInput, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnSmoothL1LossBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
- 算子功能:计算SmoothL1损失函数(aclnnSmoothL1Loss)的反向传播。
- 计算公式:
aclnnSmoothL1LossBackwardGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnSmoothL1LossBackwardGetWorkspaceSize(const aclTensor *gradOut, const aclTensor *self, const aclTensor *target, int64_t reduction, float beta, aclTensor *gradInput, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- gradOut: Device侧的aclTensor,shape需要与self、target满足broadcast条件。数据类型支持FLOAT、FLOAT16,且数据类型与self、target的数据类型需满足数据类型推导规则。支持非连续的Tensor,数据格式支持ND。
- self:Device侧的aclTensor,shape需要与gradOut、target满足broadcast条件。数据类型支持FLOAT、FLOAT16,且数据类型与gradOut、target的数据类型需满足数据类型推导规则。支持非连续的Tensor,数据格式支持ND。
- target:Device侧的aclTensor,shape需要与gradOut、self满足broadcast条件。数据类型支持FLOAT、FLOAT16,且数据类型与gradOut、self 的数据类型需满足数据类型推导规则。支持非连续的Tensor,数据格式支持ND。
- reduction:Host侧的int64_t,指定要应用到输出的缩减。支持3种枚举值:取0代表none,表示不应用减少;取1代表mean,表示输出的总和将除以输出中的元素数;取2代表sum,表示输出将被求和。
- beta:指定在L1和L2损失之间更改的阈值,数据类型为FLOAT,该值必须是非负的。
- gradInput:Device侧的aclTensor,shape为gradOut、self、target的broadcast结果。数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、target、gradOut或gradInput是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self、target、gradOut或gradInput的数据类型和数据格式不在支持的范围之内。
- self、target、gradOut或gradInput的shape不符合约束。
- reduction不符合约束。
- beta不符合约束。
aclnnSmoothL1LossBackward
- 接口定义:
aclnnStatus aclnnSmoothL1LossBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnSmoothL1LossBackwardGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_smooth_l1_loss_backward.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> gradOutShape = {4, 2};
std::vector<int64_t> selfShape = {4, 2};
std::vector<int64_t> targetShape = {4, 2};
std::vector<int64_t> gradInputShape = {4, 2};
int64_t reduction = 0;
float beta = 1.0;
void* gradOutDeviceAddr = nullptr;
void* selfDeviceAddr = nullptr;
void* targetDeviceAddr = nullptr;
void* gradInputDeviceAddr = nullptr;
aclTensor* gradOut = nullptr;
aclTensor* self = nullptr;
aclTensor* target = nullptr;
aclTensor* gradInput = nullptr;
std::vector<float> gradOutHostData = {1, 1, 1, 1, 1, 1, 1, 1};
std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
std::vector<float> targetHostData = {1, 1, 1, 1, 1, 1, 1, 1};
std::vector<float> gradInputHostData(8, 0);
// 创建gradOut aclTensor
ret = CreateAclTensor(gradOutHostData, gradOutShape, &gradOutDeviceAddr, aclDataType::ACL_FLOAT, &gradOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建target aclTensor
ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_FLOAT, &target);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建gradInput aclTensor
ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnSmoothL1LossBackward第一段接口
ret = aclnnSmoothL1LossBackwardGetWorkspaceSize(gradOut, self, target, reduction, beta, gradInput, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSmoothL1LossBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnSmoothL1LossBackward第二段接口
ret = aclnnSmoothL1LossBackward(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSmoothL1LossBackward failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(gradInputShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), gradInputDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(gradOut);
aclDestroyTensor(self);
aclDestroyTensor(target);
aclDestroyTensor(gradInput);
return 0;
}
父主题: NN类算子接口

