昇腾社区首页
中文
注册

aclnnRReluWithNoise/aclnnInplaceRReluWithNoise

接口原型

  • aclnnRReluWithNoise和aclnnInplaceRReluWithNoise实现相同的功能,其使用区别如下,请根据自身实际场景选择合适的算子。
    • aclnnRReluWithNoise:需新建一个输出张量对象存储计算结果。
    • aclnnInplaceRReluWithNoise:无需新建输出张量对象,直接在输入张量的内存中存储计算结果。
  • 每个算子分为两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。
  • aclnnRReluWithNoise两段式接口如下:
    • 第一段接口:aclnnStatus aclnnRReluWithNoiseGetWorkspaceSize(const aclTensor *self, aclTensor *noiseRef, const aclScalar *lower, const aclScalar *upper, bool training, int64_t seed, int64_t offset, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
    • 第二段接口:aclnnStatus aclnnRReluWithNoise(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
  • aclnnInplaceRReluWithNoise两段式接口如下:
    • 第一段接口:aclnnStatus aclnnInplaceRReluWithNoiseGetWorkspaceSize(const aclTensor *self, aclTensor *noiseRef, const aclScalar *lower, const aclScalar *upper, bool training, int64_t seed, int64_t offset, uint64_t *workspaceSize, aclOpExecutor **executor)
    • 第二段接口:aclnnStatus aclnnInplaceRReluWithNoise(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:带有noise的RRelu激活函数。
  • 计算公式:

    其中a是随机变量,服从均匀分布U(lower, upper)。如果是训练模式(training=true),noiseRef计算公式如下:

aclnnRReluWithNoiseGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnRReluWithNoiseGetWorkspaceSize(const aclTensor *self, aclTensor *noiseRef, const aclScalar *lower, const aclScalar *upper, bool training, int64_t seed, int64_t offset, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor。数据类型支持FLOAT16、FLOAT,数据格式支持ND。
    • noiseRef:Device侧的aclTensor。数据类型支持FLOAT16、FLOAT,且数据类型需要与self一致,数据格式支持ND。当training=true时,size需要不小于self(shape建议与self一致)。
    • lower:Host侧的aclScalar ,均匀分布U的下界。数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL。
    • upper:Host侧的aclScalar ,均匀分布U的上界。数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL。
    • training:bool类型变量,是否是训练场景。
    • seed:int64_t 类型变量,随机数生成器的种子,它影响生成的随机数序列。
    • offset:int64_t 类型变量,随机数生成器的偏移量,它影响生成的随机数序列的位置。设置偏移量后,生成的随机数序列会从指定位置开始。
    • out:Device侧的aclTensor,数据类型支持FLOAT16、FLOAT,且数据类型需要与self构成互推导关系,shape需要与self一致,数据格式支持ND。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、noiseRef或out是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self和noiseRef的数据类型和数据格式不在支持的范围内。
      • 当training=true且self的size大于noiseRef的size。
      • self、noiseRef和out数据类型不一致。

aclnnRReluWithNoise

  • 接口定义:

    aclnnStatus aclnnRReluWithNoise(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnRReluWithNoiseGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

aclnnInplaceRReluWithNoiseGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnInplaceRReluWithNoiseGetWorkspaceSize(const aclTensor *self, aclTensor *noiseRef, const aclScalar *lower, const aclScalar *upper, bool training, int64_t seed, int64_t offset, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor。数据类型支持FLOAT16、FLOAT,数据格式支持ND。
    • noiseRef:Device侧的aclTensor。数据类型支持FLOAT16、FLOAT,且数据类型需要与self一致,数据格式支持ND。当training=true时,size需要不小于self(shape建议与self一致)。
    • lower:Host侧的aclScalar ,均匀分布U的下界。数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL。
    • upper:Host侧的aclScalar ,均匀分布U的上界。数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL。
    • training:bool类型变量,是否是训练场景。
    • seed:int64_t 类型变量,随机数生成器的种子,它影响生成的随机数序列。
    • offset:int64_t 类型变量,随机数生成器的偏移量,它影响生成的随机数序列的位置。设置偏移量后,生成的随机数序列会从指定位置开始。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、noiseRef是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self和noiseRef的数据类型和数据格式不在支持的范围内。
      • 当training=true且self的size大于noiseRef的size。
      • self、noiseRef的数据类型不一致。

aclnnInplaceRReluWithNoise

  • 接口定义:

    aclnnStatus aclnnInplaceRReluWithNoise(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnInplaceRReluWithNoiseGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_rrelu_with_noise.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {2, 2};
  std::vector<int64_t> noiseShape = {2, 2};
  std::vector<int64_t> outShape = {2, 2};
  void* selfDeviceAddr = nullptr;
  void* noiseDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* noise = nullptr;
  aclScalar* lower = nullptr;
  aclScalar* upper = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> selfHostData = {1, 2, 3, 4};
  std::vector<float> noiseHostData = {4, 3, 2, 1};
  std::vector<float> outHostData = {0, 0, 0, 0};
  float lowerValue = 0.1f;
  float upperValue = 0.3f;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建noise aclTensor
  ret = CreateAclTensor(noiseHostData, noiseShape, &noiseDeviceAddr, aclDataType::ACL_FLOAT, &noise);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建lower aclScalar
  lower = aclCreateScalar(&lowerValue, aclDataType::ACL_FLOAT);
  CHECK_RET(lower != nullptr, return ret);
  // 创建upper aclScalar
  upper = aclCreateScalar(&upperValue, aclDataType::ACL_FLOAT);
  CHECK_RET(upper != nullptr, return ret);
  bool training = false;
  int64_t seed = 0;
  int64_t offset = 0;

  // 3. 调用CANN算子库API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnRReluWithNoise第一段接口
  ret = aclnnRReluWithNoiseGetWorkspaceSize(self, noise, lower, upper, training, seed, offset, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRReluWithNoiseGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnRReluWithNoise第二段接口
  ret = aclnnRReluWithNoise(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRReluWithNoise failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(noise);
  aclDestroyTensor(out);
  aclDestroyScalar(lower);
  aclDestroyScalar(upper);
  return 0;
}