昇腾社区首页
中文
注册

aclnnRoll

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnRollGetWorkspaceSize(const aclTensor *x, const aclIntArray *shifts, const aclIntArray *dims, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnRoll(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:按指定的尺寸和维度移动张量中的数据。
  • 示例:
    x = tensor([[1, 2],  
                [3, 4],
                [5, 6],
                [7, 8]])
    经过torch.roll(x, 1, 0)计算后,(在dim=0的维度上向下整体移动1行)
    x = tensor([[7, 8],
                [1, 2],
                [3, 4],
                [5, 6]])

aclnnRollGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnRollGetWorkspaceSize(const aclTensor *x, const aclIntArray *shifts, const aclIntArray *dims, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • x:Device侧的aclTensor,数据类型支持FLOAT16、FLOAT32、INT8、UINT8、INT32、UINT32、BOOL,支持非连续的Tensor,数据格式支持ND。
    • shifts:int64的数组,数组长度与dims保持一致。
    • dims:int64的数组,数组长度与shifts保持一致,取值范围在[-x.dim(), x.dim()-1]内。例如x的维度是4,则取值范围是[-4, 3]。
    • out:Device侧的aclTensor,数据类型和数据格式与输入x保持一致。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的x或shifts为空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • gradOutput、self、padding和gradInput的数据类型或数据格式不在支持的范围内。
      • x的数据类型和数据格式不在支持的范围内。
      • dims不为空时,shifts和dims的size不一致。
      • 走AI Core分支:当dims为空,shifts仅支持等于1,其他情况报错。
      • 走AI CPU分支:当dims为空时报错。
      • dims的数值不在支持的范围内。
      • x的维度超过8维。

aclnnRoll

  • 接口定义:

    aclnnStatus aclnnRoll(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnRollGetGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_roll.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> xShape = {1, 2, 3};
  std::vector<int64_t> outShape = {1, 2, 3};
  void* xDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* x = nullptr;
  aclIntArray* shifts = nullptr;
  aclIntArray* dims = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> xHostData = {0, 1, 2, 3, 4, 5};
  std::vector<float> outHostData(6, 0);
  std::vector<int64_t> dimsData = {0, 0};
  std::vector<int64_t> shiftsData = {1, 2};
  // 创建x aclTensor
  ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建shifts aclIntArray
  shifts = aclCreateIntArray(shiftsData.data(), 2);
  CHECK_RET(shifts != nullptr, return ret);
  // 创建dims aclIntArray
  dims = aclCreateIntArray(dimsData.data(), 2);
  CHECK_RET(dims != nullptr, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnRoll第一段接口
  ret = aclnnRollGetWorkspaceSize(x, shifts, dims, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRollGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnRoll第二段接口
  ret = aclnnRoll(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRoll failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(x);
  aclDestroyIntArray(shifts);
  aclDestroyIntArray(dims);
  aclDestroyTensor(out);
  return 0;
}