aclnnNLLLoss
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnNLLLossGetWorkspaceSize(const aclTensor *self, const aclTensor *target, const aclTensor *weight, int64_t reduction, int64_t ignoreIndex, aclTensor *out, aclTensor *totalWeightOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnNLLLoss(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
aclnnNLLLossGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnNLLLossGetWorkspaceSize(const aclTensor *self, const aclTensor *target, const aclTensor *weight, int64_t reduction, int64_t ignoreIndex, aclTensor *out, aclTensor *totalWeightOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self(aclTensor*, 计算输入): 公式中的输入self,shape为(N,C)或者(C),其中N表示batch size,C表示类别数。数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持),支持非连续的Tensor, 数据格式支持ND。
- target(aclTensor*, 计算输入): 公式中的输入target,表示真实标签,shape为(N) 或者(),其中每个元素的取值范围是[0, C-1]。数据类型支持INT64、UINT8、INT32 ,支持非连续的Tensor, 数据格式支持ND。
- weight(aclTensor*, 计算输入): 公式中的输入weight,表示每个类别的缩放权重,shape为(C)。数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持),支持非连续的Tensor,数据格式支持ND。
- reduction(int64_t, 计算输入): 公式中的reduction,指定要应用到输出的缩减。支持3种枚举值:当取值为0,即为"none",表示不应用减少;当取值为1,即为"mean",表示输出的总和将除以输出中的元素数;当取值为2,即为"sum", 表示输出将被求和。
- ignoreIndex(int64_t, 计算输入): 公式中的ignoreIndex,指定一个被忽略且不影响输入梯度的目标值。
- out(aclTensor*, 计算输出): 公式中的out,shape为(N, )或者(),数据格式支持ND。
- totalWeightOut(aclTensor*, 计算输出): 公式中的totalWeightOut,shape为()。数据格式支持ND。
- workspaceSize(uint64_t*, 出参):返回用户需要在Device侧申请的workspace大小
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、target、weight、out、totalWeightOut为空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self、target、weight的数据类型不在支持的范围内。
- self、weight的数据类型不一致。
- self、weight、out、totalWeightOut的shape不正确。
- reduction值不在0~2范围之内。
aclnnNLLLoss
- 接口定义:
aclnnStatus aclnnNLLLoss(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnNLLLossGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_nll_loss.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. device/context/stream初始化, 参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); // check根据自己的需要处理 CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> selfShape = {2, 3}; std::vector<int64_t> targetShape = {2}; std::vector<int64_t> weightShape = {3}; std::vector<int64_t> outShape = {2}; std::vector<int64_t> totalWeightOutShape = {1}; void* selfDeviceAddr = nullptr; void* targetDeviceAddr = nullptr; void* weightDeviceAddr = nullptr; void* outDeviceAddr = nullptr; void* totalWeightOutDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* target = nullptr; aclTensor* weight = nullptr; aclTensor* out = nullptr; aclTensor* totalWeightOut = nullptr; std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5}; std::vector<int32_t> targetHostData = {0, 2}; std::vector<float> weightHostData = {1.1, 1.2, 1.3}; std::vector<float> outHostData = {0, 0}; std::vector<float> totalWeightOutHostData = {0}; int64_t reduction = 0; int64_t ignoreIndex = -100; // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建target aclTensor ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_INT32, &target); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建weight aclScalar ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建totalWeightOut aclTensor ret = CreateAclTensor(totalWeightOutHostData, totalWeightOutShape, &totalWeightOutDeviceAddr, aclDataType::ACL_FLOAT, &totalWeightOut); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnNLLLoss第一段接口 ret = aclnnNLLLossGetWorkspaceSize(self, target, weight, reduction, ignoreIndex, out, totalWeightOut, &workspaceSize,&executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNLLLossGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnNLLLoss第二段接口 ret = aclnnNLLLoss(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNLLLoss failed. ERROR: %d\n", ret); return ret); // 4.(固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5.. 获取输出的值,将device侧内存上的结果拷贝至Host侧 auto size = GetShapeSize(outShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } // 6.释放aclTensor和aclScalar aclDestroyTensor(self); aclDestroyTensor(target); aclDestroyTensor(weight); aclDestroyTensor(out); return 0; }
父主题: NN类算子接口