aclnnMaxUnpool2dBackward
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnMaxUnpool2dBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclTensor *indices, const aclIntArray *outputSize, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnMaxUnpool2dBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:MaxPool2d的逆运算(aclnnMaxUnpool2d)的反向传播,根据indices索引在out中填入gradOutut的元素值。
- 计算公式:
其中out、gradOutput、indices是最后两轴合为一轴经过reshape得到,i∈[0, H*W)。
aclnnMaxUnpool2dBackwardGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnMaxUnpool2dBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclTensor *indices, const aclIntArray *outputSize, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- gradOutput:Device侧的aclTensor,输入张量,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8,且数据类型需要self一致,shape需要为(N, C, outputSize[0], outputSize[1])或(C, outputSize[0], outputSize[1])。支持非连续的Tensor,数据格式支持ND。
- self:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8,且数据类型需要与gradOutput一致,shape需要为(N, C, H, W)或(C, H, W),且shape需要与indices一致。支持非连续的Tensor,数据格式支持ND。
- indices:Device侧的aclTensor,公式中的输入indices,数据类型支持INT64、INT32,shape需要与self一致。支持非连续的Tensor,数据格式支持ND。
- outputSize:Host侧的aclIntArray,元素个数必须为2,元素值必须与gradOutput的shape的最后两维一致。
- out:Device侧的aclTensor,输出张量,数据类型需要是gradOutput可转换的数据类型,shape需要与self一致。支持非连续的Tensor,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的gradOutput、self、indices、outputSize或out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self、indices、out的shape不一致。
- self的维度不为3维或者4维。
- outputSize的元素个数不为2。
- gradOutput的H和W与outputSize的元素不一致。
aclnnMaxUnpool2dBackward
- 接口定义:
aclnnStatus aclnnMaxUnpool2dBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnMaxUnpool2dBackwardGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_max_unpool2d_backward.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
int64_t N = 1;
int64_t C = 3;
int64_t H = 2;
int64_t W = 2;
std::vector<int64_t> outputSizeData = {3, 1};
std::vector<int64_t> gradOutputShape = {N, C, outputSizeData[0], outputSizeData[1]};
std::vector<int64_t> selfShape = {N, C, H, W};
std::vector<int64_t> indicesShape = {N, C, H, W};
std::vector<int64_t> outShape = {N, C, H, W};
void* gradOutputDeviceAddr = nullptr;
void* selfDeviceAddr = nullptr;
void* indicesDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* gradOutput = nullptr;
aclTensor* self = nullptr;
aclTensor* indices = nullptr;
aclIntArray* outputSize = nullptr;
aclTensor* out = nullptr;
std::vector<float> gradOutputHostData = {0, 1, 2, 3, 4, 5, 6, 7, 8};
std::vector<float> selfHostData(12, 1);
std::vector<int32_t> indicesHostData = {0, 1, 2, 1, 2, 0, 1, 1, 1, 0, 0, 0};
std::vector<float> outHostData(12, 0);
// 创建gradOutput aclTensor
ret =
CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建indices aclTensor
ret = CreateAclTensor(indicesHostData, indicesShape, &indicesDeviceAddr, aclDataType::ACL_INT32, &indices);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建outputSize aclIntArray
outputSize = aclCreateIntArray(outputSizeData.data(), 2);
CHECK_RET(outputSize != nullptr, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnMaxUnpool2dBackward第一段接口
ret = aclnnMaxUnpool2dBackwardGetWorkspaceSize(gradOutput, self, indices, outputSize, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMaxUnpool2dBackwardGetWorkspaceSize failed. ERROR: %d\n", ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnMaxUnpool2dBackward第二段接口
ret = aclnnMaxUnpool2dBackward(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMaxUnpool2dBackward failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(gradOutput);
aclDestroyTensor(self);
aclDestroyTensor(indices);
aclDestroyIntArray(outputSize);
aclDestroyTensor(out);
return 0;
}
父主题: NN类算子接口
