aclnnLayerNorm/aclnnLayerNormWithImplMode
接口原型

- aclnnLayerNorm和aclnnLayerNormWithImplMode实现相同的功能,其使用区别在于后者提供了“implMode”计算模式选项,请根据自身实际场景选择合适的算子。
- 每个算子分为两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。
- aclnnLayerNorm两段式接口如下:
- 第一段接口:aclnnStatus aclnnLayerNormGetWorkspaceSize(const aclTensor *input, const aclIntArray *normalizedShape, const aclTensor *weightOptional, const aclTensor *biasOptional, double eps, aclTensor *out, aclTensor *meanOutOptional, aclTensor *rstdOutOptional, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnLayerNorm(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- aclnnLayerNormWithImplMode两段式接口如下:
- 第一段接口:aclnnStatus aclnnLayerNormWithImplModeGetWorkspaceSize(const aclTensor *input, const aclIntArray *normalizedShape, const aclTensor *weightOptional, const aclTensor *biasOptional, double eps, aclTensor *out, aclTensor *meanOutOptional, aclTensor *rstdOutOptional, int32_t implMode, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnLayerNormWithImplMode(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
aclnnLayerNormGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnLayerNormGetWorkspaceSize(const aclTensor *input, const aclIntArray *normalizedShape, const aclTensor *weightOptional, const aclTensor *biasOptional, double eps, aclTensor *out, aclTensor *meanOutOptional, aclTensor *rstdOutOptional, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- input:Device侧的aclTensor,公式中的x,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape长度≥normalizedShape长度,且与normalizedShape右对齐时对应的维度shape相等。支持非连续的Tensor,数据格式支持ND。
- normalizedShape:Host侧的aclIntArray,表示需要进行norm计算的shape,数据类型支持INT64。其长度小于等于input的shape长度,与input的shape右对齐时的维度shape相等。
- weightOptional:Device侧的aclTensor,公式中的w,可选参数。weightOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与normalizedShape相等。支持非连续的Tensor,数据格式支持ND。weightOptional为空时,需要构造一个shape与normalizedShape相等、数据全为1的张量。
- biasOptional:Device侧的aclTensor,公式中的bias,可选参数。biasOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与normalizedShape相等。支持非连续的Tensor,数据格式支持ND。biasOptional为空时,需要构造一个shape与normalizedShape相等、数据全为0的张量。
- eps:Host侧的浮点数,公式中的eps,用于规避除零计算,数据类型为DOUBLE,需要是可转换成与input相同的数据类型。
- out:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与input的shape相等。支持非连续的Tensor,数据格式支持ND。
- meanOutOptional:Device侧的aclTensor,可选参数。meanOutOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与rstdOutOptional的shape相等。支持非连续的Tensor,数据格式支持ND。
- rstdOutOptional:Device侧的aclTensor,可选参数。rstdOutOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与meanOutOptional的shape相等。支持非连续的Tensor,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的input、normalizedShape或out为空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- input、normalizedShape、weightOptional非空时、biasOptional非空时、out、meanOutOptional非空时或rstdOutOptional非空时的shape超过8维。
- input、weightOptional非空时、biasOptional非空时、out、meanOutOptional非空时或rstdOutOptional非空时的数据类型不在支持的范围内。
- normalizedShape维度小于1维。
- weightOptional非空且shape与normalizedShape不相等。
- biasOptional非空且shape与normalizedShape不相等。
- input的维度小于normalizedShape的维度。
- input的shape与normalizedShape右对齐时对应维度shape不相等。
aclnnLayerNorm
- 接口定义:
aclnnStatus aclnnLayerNorm(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnLayerNormGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
aclnnLayerNormWithImplModeGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnLayerNormWithImplModeGetWorkspaceSize(const aclTensor *input, const aclIntArray *normalizedShape, const aclTensor *weightOptional, const aclTensor *biasOptional, double eps, aclTensor *out, aclTensor *meanOutOptional, aclTensor *rstdOutOptional, int32_t implMode, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- input:Device侧的aclTensor,公式中的x,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape长度≥normalizedShape长度,且与normalizedShape右对齐时对应的维度shape相等。支持非连续的Tensor,数据格式支持ND。
- normalizedShape:Host侧的aclIntArray,表示需要进行norm计算的shape,数据类型支持INT64。其长度小于等于input的shape长度,与input的shape右对齐时的维度shape相等。
- weightOptional:Device侧的aclTensor,公式中的w,可选参数。weightOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与normalizedShape相等。支持非连续的Tensor,数据格式支持ND。weightOptional为空时,需要构造一个shape与normalizedShape相等、数据全为1的张量。
- biasOptional:Device侧的aclTensor,公式中的bias,可选参数。biasOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与normalizedShape相等。支持非连续的Tensor,数据格式支持ND。biasOptional为空时,需要构造一个shape与normalizedShape相等、数据全为0的张量。
- eps:Host侧的浮点数,公式中的eps,用于规避除零计算,数据类型为DOUBLE,需要是可转换成与input相同的数据类型。
- out:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与input的shape相等。支持非连续的Tensor,数据格式支持ND。
- meanOutOptional:Device侧的aclTensor,可选参数。meanOutOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与rstdOutOptional的shape相等。支持非连续的Tensor,数据格式支持ND。
- rstdOutOptional:Device侧的aclTensor,可选参数。rstdOutOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与meanOutOptional的shape相等。支持非连续的Tensor,数据格式支持ND。
- implMode:Host侧的整型,精度模式,用于指定kernel选择对应的计算模式。数据类型支持INT32。目前支持3种取值,其中0表示高精度、1表示高性能、2表示保持FLOAT16计算模式。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的input、normalizedShape或out为空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- input、normalizedShape、weightOptional非空时、biasOptional非空时、out、meanOutOptional非空时或rstdOutOptional非空时的shape超过8维。
- input、weightOptional非空时、biasOptional非空时、out、meanOutOptional非空时或rstdOutOptional非空时的数据类型不在支持的范围内。
- normalizedShape维度小于1维。
- weightOptional非空且shape与normalizedShape不相等。
- biasOptional非空且shape与normalizedShape不相等。
- input的维度小于normalizedShape的维度。
- input的shape与normalizedShape右对齐时对应维度shape不相等。
- implMode的取值不在0、1、2取值范围内。
aclnnLayerNormWithImplMode
- 接口定义:
aclnnStatus aclnnLayerNormWithImplMode(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnLayerNormWithImplModeGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
- aclnnLayerNorm的调用示例代码如下,仅供参考:
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_layer_norm.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensorMem(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> void aclCreateTensorP(const std::vector<T>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); } template <typename T> int CreateAclIntArrayMem(const std::vector<T>& hostData, void** deviceAddr) { auto size = GetShapeSize(hostData) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> void aclCreateIntArrayP(const std::vector<T>& hostData, aclIntArray** intArray) { // 调用接口创建aclIntArray *intArray = aclCreateIntArray(hostData.data(), hostData.size()); } int main() { // 1.(固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> xShape = {1, 800, 5120}; std::vector<int64_t> normShape = {5120}; std::vector<int64_t> meanShape = {1, 800, 1}; void* xDeviceAddr = nullptr; void* normShapeAddr = nullptr; void* weightDeviceAddr = nullptr; void* biasDeviceAddr = nullptr; void* outDeviceAddr = nullptr; void* meanDeviceAddr = nullptr; void* rstdDeviceAddr = nullptr; aclTensor* x = nullptr; aclIntArray* norm = nullptr; aclTensor* weight = nullptr; aclTensor* bias = nullptr; aclTensor* out = nullptr; aclTensor* mean = nullptr; aclTensor* rstd = nullptr; std::vector<uint16_t> xHostData(4096000, 2.0); std::vector<int64_t> normData = {5120}; std::vector<uint16_t> weightHostData(5120, 1.0); std::vector<uint16_t> biasHostData(5120, 0.0); std::vector<uint16_t> outHostData(4096000, 0.0); std::vector<uint16_t> meanHostData(800, 0.0); std::vector<uint16_t> rstdHostData(800, 0.0); double eps = 1e-5; // 创建x aclTensor ret = CreateAclTensorMem(xHostData, xShape, &xDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建normalizedShape aclIntArray ret = CreateAclIntArrayMem(normData, &normShapeAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建weight aclTensor ret = CreateAclTensorMem(weightHostData, normShape, &weightDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建bias aclTensor ret = CreateAclTensorMem(biasHostData, normShape, &biasDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensorMem(outHostData, xShape, &outDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建mean aclTensor ret = CreateAclTensorMem(meanHostData, meanShape, &meanDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建rstd aclTensor ret = CreateAclTensorMem(rstdHostData, meanShape, &rstdDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); aclCreateTensorP(xShape, &xDeviceAddr, aclDataType::ACL_FLOAT16, &x); aclCreateIntArrayP(normData, &norm); aclCreateTensorP(normShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16, &weight); aclCreateTensorP(normShape, &biasDeviceAddr, aclDataType::ACL_FLOAT16, &bias); aclCreateTensorP(xShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out); aclCreateTensorP(meanShape, &meanDeviceAddr, aclDataType::ACL_FLOAT16, &mean); aclCreateTensorP(meanShape, &rstdDeviceAddr, aclDataType::ACL_FLOAT16, &rstd); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnLayerNorm第一段接口 ret = aclnnLayerNormGetWorkspaceSize(x, norm, weight, bias, eps, out, mean, rstd, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNormGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnLayerNorm第二段接口 ret = aclnnLayerNorm(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNorm failed. ERROR: %d\n", ret); return ret); // 4.(固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(xShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("out result[%ld] is: %f\n", i, resultData[i]); } auto size1 = GetShapeSize(meanShape); std::vector<float> resultData1(size1, 0); ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), meanDeviceAddr, size1 * sizeof(resultData1[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size1; i++) { LOG_PRINT("mean result[%ld] is: %f\n", i, resultData1[i]); } auto size2 = GetShapeSize(meanShape); std::vector<float> resultData2(size2, 0); ret = aclrtMemcpy(resultData2.data(), resultData2.size() * sizeof(resultData2[0]), rstdDeviceAddr, size2 * sizeof(resultData2[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size2; i++) { LOG_PRINT("rstd result[%ld] is: %f\n", i, resultData2[i]); } // 6. 释放aclTensor和aclIntArray,需要根据具体API的接口定义修改 aclDestroyTensor(x); aclDestroyIntArray(norm); aclDestroyTensor(weight); aclDestroyTensor(bias); aclDestroyTensor(out); aclDestroyTensor(mean); aclDestroyTensor(rstd); return 0; }
- aclnnLayerNormWithImplMode调用示例代码如下,仅供参考:
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_layer_norm.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensorMem(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> void aclCreateTensorP(const std::vector<T>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); } template <typename T> int CreateAclIntArrayMem(const std::vector<T>& hostData, void** deviceAddr) { auto size = GetShapeSize(hostData) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> void aclCreateIntArrayP(const std::vector<T>& hostData, aclIntArray** intArray) { // 调用接口创建aclIntArray *intArray = aclCreateIntArray(hostData.data(), hostData.size()); } int main() { // 1.(固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> xShape = {1, 800, 5120}; std::vector<int64_t> normShape = {5120}; std::vector<int64_t> meanShape = {1, 800, 1}; void* xDeviceAddr = nullptr; void* normShapeAddr = nullptr; void* weightDeviceAddr = nullptr; void* biasDeviceAddr = nullptr; void* outDeviceAddr = nullptr; void* meanDeviceAddr = nullptr; void* rstdDeviceAddr = nullptr; aclTensor* x = nullptr; aclIntArray* norm = nullptr; aclTensor* weight = nullptr; aclTensor* bias = nullptr; aclTensor* out = nullptr; aclTensor* mean = nullptr; aclTensor* rstd = nullptr; std::vector<uint16_t> xHostData(4096000, 2.0); std::vector<int64_t> normData = {5120}; std::vector<uint16_t> weightHostData(5120, 1.0); std::vector<uint16_t> biasHostData(5120, 0.0); std::vector<uint16_t> outHostData(4096000, 0.0); std::vector<uint16_t> meanHostData(800, 0.0); std::vector<uint16_t> rstdHostData(800, 0.0); double eps = 1e-5; int32_t implMode = 2; // 创建x aclTensor ret = CreateAclTensorMem(xHostData, xShape, &xDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建normalizedShape aclIntArray ret = CreateAclIntArrayMem(normData, &normShapeAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建weight aclTensor ret = CreateAclTensorMem(weightHostData, normShape, &weightDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建bias aclTensor ret = CreateAclTensorMem(biasHostData, normShape, &biasDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensorMem(outHostData, xShape, &outDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建mean aclTensor ret = CreateAclTensorMem(meanHostData, meanShape, &meanDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建rstd aclTensor ret = CreateAclTensorMem(rstdHostData, meanShape, &rstdDeviceAddr); CHECK_RET(ret == ACL_SUCCESS, return ret); aclCreateTensorP(xShape, &xDeviceAddr, aclDataType::ACL_FLOAT16, &x); aclCreateIntArrayP(normData, &norm); aclCreateTensorP(normShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16, &weight); aclCreateTensorP(normShape, &biasDeviceAddr, aclDataType::ACL_FLOAT16, &bias); aclCreateTensorP(xShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out); aclCreateTensorP(meanShape, &meanDeviceAddr, aclDataType::ACL_FLOAT16, &mean); aclCreateTensorP(meanShape, &rstdDeviceAddr, aclDataType::ACL_FLOAT16, &rstd); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnLayerNormWithImplMode第一段接口 ret = aclnnLayerNormWithImplModeGetWorkspaceSize(x, norm, weight, bias, eps, out, mean, rstd, implMode, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNormWithImplModeGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnLayerNormWithImplMode第二段接口 ret = aclnnLayerNormWithImplMode(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNormWithImplMode failed. ERROR: %d\n", ret); return ret); // 4.(固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(xShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("out result[%ld] is: %f\n", i, resultData[i]); } auto size1 = GetShapeSize(meanShape); std::vector<float> resultData1(size1, 0); ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), meanDeviceAddr, size1 * sizeof(resultData1[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size1; i++) { LOG_PRINT("mean result[%ld] is: %f\n", i, resultData1[i]); } auto size2 = GetShapeSize(meanShape); std::vector<float> resultData2(size2, 0); ret = aclrtMemcpy(resultData2.data(), resultData2.size() * sizeof(resultData2[0]), rstdDeviceAddr, size2 * sizeof(resultData2[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size2; i++) { LOG_PRINT("rstd result[%ld] is: %f\n", i, resultData2[i]); } // 6. 释放aclTensor和aclIntArray,需要根据具体API的接口定义修改 aclDestroyTensor(x); aclDestroyIntArray(norm); aclDestroyTensor(weight); aclDestroyTensor(bias); aclDestroyTensor(out); aclDestroyTensor(mean); aclDestroyTensor(rstd); return 0; }