昇腾社区首页
中文
注册

aclnnKthvalue

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnKthvalueGetWorkspaceSize(const aclTensor *self, int64_t k, int64_t dim, bool keepdim, aclTensor *valuesOut, aclTensor *indicesOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnKthvalue(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

算子功能:返回张量在指定维度dim上的第k个最小值及索引。

aclnnKthvalueGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnKthvalueGetWorkspaceSize(const aclTensor *self, int64_t k, int64_t dim, bool keepdim, aclTensor *valuesOut, aclTensor *indicesOut, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、INT32。支持非连续的Tensor,数据格式支持ND。
    • k:int64_t类型整数。表示取指定维度上第k个最小值,取值范围为[0, self.size(dim)]。
    • dim:int64_t类型整数。表示取输入张量的指定维度,如果没有给出,默认选择最后一个dim。取值范围为[-self.dim(), self.dim())。
    • keepdim:bool类型数据,表示输出张量是否保留了dim。True表示valuesOut和indicesOut张量的大小都与self相同;False表示dim将被压缩,得到的张量维数比输入张量self少1维。
    • valuesOut:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、INT32,且数据类型与self保持一致。支持非连续的Tensor,数据格式支持ND。
    • indicesOut:Device侧的aclTensor,数据类型支持INT64。表示原始输入张量中沿dim维的第k个最小值的下标。支持非连续的Tensor,数据格式支持ND。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、valuesOut或indicesOut是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self、valuesOut或indicesOut的数据类型和数据格式不在支持的范围内。
      • dim不在输入self的合理维度范围内。
      • k小于0或者k大于输入self在dim维度上的size大小。

aclnnKthvalue

  • 接口定义:

    aclnnStatus aclnnKthvalue(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnKthvalueGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_kthvalue.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
  shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
   return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {2, 4};
  std::vector<int64_t> outShape = {2, 1};
  void* selfDeviceAddr = nullptr;
  void* valuesOutDeviceAddr = nullptr;
  void* indicesOutDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* valuesOut = nullptr;
  aclTensor* indicesOut = nullptr;
  std::vector<float> selfHostData = {-3, -2, -1, 0, 1, 2, 3, 4};
  std::vector<float> valuesHostData = {0, 0};
  std::vector<float> indicesHostData = {0, 0};
  int64_t k = 2;
  int64_t dim = 1;
  bool keepdim = true;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建valuesOut aclTensor
  ret = CreateAclTensor(valuesHostData, outShape, &valuesOutDeviceAddr, aclDataType::ACL_FLOAT, &valuesOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建indicesOut aclTensor
  ret = CreateAclTensor(indicesHostData, outShape, &indicesOutDeviceAddr, aclDataType::ACL_INT64, &indicesOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3.调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnKthvalue第一段接口
  ret = aclnnKthvalueGetWorkspaceSize(self, k, dim, keepdim, valuesOut, indicesOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnKthvalueGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
  ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnKthvalue第二段接口
  ret = aclnnKthvalue(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnKthvalue failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> valuesData(size, 0);
  ret = aclrtMemcpy(valuesData.data(), valuesData.size() * sizeof(valuesData[0]), valuesOutDeviceAddr, size * sizeof(float),
  ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy values from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("values[%ld] is: %f\n", i, valuesData[i]);
  }
  std::vector<long> indicesData(size, 0);
  ret = aclrtMemcpy(indicesData.data(), indicesData.size() * sizeof(indicesData[0]), indicesOutDeviceAddr, size * sizeof(long),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy indices from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("indices[%ld] is: %ld\n", i, indicesData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(valuesOut);
  aclDestroyTensor(indicesOut);
  return 0;
}