aclnnKthvalue
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnKthvalueGetWorkspaceSize(const aclTensor *self, int64_t k, int64_t dim, bool keepdim, aclTensor *valuesOut, aclTensor *indicesOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnKthvalue(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
算子功能:返回张量在指定维度dim上的第k个最小值及索引。
aclnnKthvalueGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnKthvalueGetWorkspaceSize(const aclTensor *self, int64_t k, int64_t dim, bool keepdim, aclTensor *valuesOut, aclTensor *indicesOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、INT32。支持非连续的Tensor,数据格式支持ND。
- k:int64_t类型整数。表示取指定维度上第k个最小值,取值范围为[0, self.size(dim)]。
- dim:int64_t类型整数。表示取输入张量的指定维度,如果没有给出,默认选择最后一个dim。取值范围为[-self.dim(), self.dim())。
- keepdim:bool类型数据,表示输出张量是否保留了dim。True表示valuesOut和indicesOut张量的大小都与self相同;False表示dim将被压缩,得到的张量维数比输入张量self少1维。
- valuesOut:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、INT32,且数据类型与self保持一致。支持非连续的Tensor,数据格式支持ND。
- indicesOut:Device侧的aclTensor,数据类型支持INT64。表示原始输入张量中沿dim维的第k个最小值的下标。支持非连续的Tensor,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、valuesOut或indicesOut是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self、valuesOut或indicesOut的数据类型和数据格式不在支持的范围内。
- dim不在输入self的合理维度范围内。
- k小于0或者k大于输入self在dim维度上的size大小。
aclnnKthvalue
- 接口定义:
aclnnStatus aclnnKthvalue(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnKthvalueGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_kthvalue.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {2, 4};
std::vector<int64_t> outShape = {2, 1};
void* selfDeviceAddr = nullptr;
void* valuesOutDeviceAddr = nullptr;
void* indicesOutDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* valuesOut = nullptr;
aclTensor* indicesOut = nullptr;
std::vector<float> selfHostData = {-3, -2, -1, 0, 1, 2, 3, 4};
std::vector<float> valuesHostData = {0, 0};
std::vector<float> indicesHostData = {0, 0};
int64_t k = 2;
int64_t dim = 1;
bool keepdim = true;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建valuesOut aclTensor
ret = CreateAclTensor(valuesHostData, outShape, &valuesOutDeviceAddr, aclDataType::ACL_FLOAT, &valuesOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建indicesOut aclTensor
ret = CreateAclTensor(indicesHostData, outShape, &indicesOutDeviceAddr, aclDataType::ACL_INT64, &indicesOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3.调用CANN算子库API,需要修改为具体的算子接口
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnKthvalue第一段接口
ret = aclnnKthvalueGetWorkspaceSize(self, k, dim, keepdim, valuesOut, indicesOut, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnKthvalueGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnKthvalue第二段接口
ret = aclnnKthvalue(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnKthvalue failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> valuesData(size, 0);
ret = aclrtMemcpy(valuesData.data(), valuesData.size() * sizeof(valuesData[0]), valuesOutDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy values from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("values[%ld] is: %f\n", i, valuesData[i]);
}
std::vector<long> indicesData(size, 0);
ret = aclrtMemcpy(indicesData.data(), indicesData.size() * sizeof(indicesData[0]), indicesOutDeviceAddr, size * sizeof(long),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy indices from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("indices[%ld] is: %ld\n", i, indicesData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(valuesOut);
aclDestroyTensor(indicesOut);
return 0;
}
父主题: NN类算子接口