aclnnIsInTensorScalar
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnIsInTensoScalarGetWorkspaceSize(const aclTensor *element, const aclScalar *testElement, bool assumeUnique, bool invert, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnIsInTensorScalar(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:检查张量element是否在标量testElement中。
aclnnIsInTensorScalarGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnIsInTensoScalarGetWorkspaceSize(const aclTensor *element, const aclScalar *testElement, bool assumeUnique, bool invert, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- element(aclTensor*,计算输入):数据类型支持FLOAT、FLOAT16、DOUBLE、INT8、INT16、INT32、INT64、UINT8。支持非连续的Tensor,数据格式支持ND。
- testElement(aclScalar*,计算输入):数据类型支持FLOAT、FLOAT16、DOUBLE、INT8、INT16、INT32、INT64、UINT8。
- assumeUnique(bool, 计算输入):数据类型支持BOOL,表示testElement中的值是否唯一,如果其值和testElement中元素的唯一性不符,不会对结果产生影响。
- invert(bool, 计算输入):数据类型支持BOOL,表示输出结果是否反转。
- out(aclTensor*, 计算输出):数据类型支持BOOL,支持非连续的Tensor,数据格式支持ND。
- workspaceSize(uint64_t*, 出参):返回用户需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的element、testElement或out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- element和testElement的数据类型不在支持的范围内。
- element和testElement无法做数据类型推导。
- element或testElement无法转换为推导后的数据类型。
- out的数据类型不是BOOL。
- element的维度大于8维。
- out的shape与element的shape不相等。
aclnnIsInTensorScalar
- 接口定义:
aclnnStatus aclnnIsInTensorScalar(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnIsInTensorScalarGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_isin_tensor_scalar.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); // check根据自己的需要处理 CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> elementShape = {5}; std::vector<int64_t> outShape = {5}; void* elementDeviceAddr = nullptr; void* outDeviceAddr = nullptr; aclTensor* element = nullptr; aclScalar* testElement = nullptr; aclTensor* out = nullptr; std::vector<float> elementHostData = {0, 1, 2, 3, 2}; std::vector<char> outHostData = {5, 0}; float testElementValue = 2; bool assumeUnique = false; bool invert = false; // 创建testElement aclScalar testElement = aclCreateScalar(&testElementValue, aclDataType::ACL_FLOAT); CHECK_RET(testElement != nullptr, return ret); // 创建element aclTensor ret = CreateAclTensor(elementHostData, elementShape, &elementDeviceAddr, aclDataType::ACL_FLOAT, &element); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_BOOL, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的算子接口 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnIsInTensorScalar第一段接口 ret = aclnnIsInTensorScalarGetWorkspaceSize(element, testElement, assumeUnique, invert, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnIsInTensorScalarGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnIsInTensorScalar第二段接口 ret = aclnnIsInTensorScalar(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnIsInTensorScalar failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<char> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %d\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyScalar(testElement); aclDestroyTensor(element); aclDestroyTensor(out); // 7. 释放device资源, 需要根据具体API的接口定义修改 aclrtFree(elementDeviceAddr); aclrtFree(outDeviceAddr); if (workspaceSize > 0) { aclrtFree(workspaceAddr); } aclrtDestroyStream(stream); aclrtDestroyContext(context); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: NN类算子接口