aclnnFloorDivides/aclnnInplaceFloorDivides
接口原型
- aclnnFloorDivides和aclnnInplaceFloorDivides实现相同的功能,其使用区别如下,请根据自身实际场景选择合适的算子。
- aclnnFloorDivides:需新建一个输出张量对象存储计算结果。
- aclnnInplaceFloorDivides:无需新建输出张量对象,直接在输入张量的内存中存储计算结果。
- 每个算子分为两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。
- aclnnFloorDivides两段式接口如下:
- 第一段接口:aclnnStatus aclnnFloorDividesGetWorkspaceSize(const aclTensor* self, const aclScalar* other, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
- 第二段接口:aclnnStatus aclnnFloorDivides(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
- aclnnInplaceFloorDivides两段式接口如下:
- 第一段接口:aclnnStatus aclnnInplaceFloorDividesGetWorkspaceSize(aclTensor* selfRef, const aclScalar* other, uint64_t* workspaceSize, aclOpExecutor** executor)
- 第二段接口:aclnnStatus aclnnInplaceFloorDivides(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
aclnnFloorDividesGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnFloorDividesGetWorkspaceSize(const aclTensor* self, const aclScalar* other, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
- 参数说明:
- self:Device侧的aclTensor,输入张量,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL、BFLOAT16(仅Atlas A2训练系列产品支持),且数据类型需要与other构成数据类型推导规则。支持非连续的Tensor,数据格式支持ND。
- other:Host侧的aclScalar,输入张量,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL、BFLOAT16(仅Atlas A2训练系列产品支持),且数据类型需要与self构成数据类型推导规则。
- out:Device侧的aclTensor,输出张量,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL、BFLOAT16(仅Atlas A2训练系列产品支持),且数据类型需要是self与other推导之后可转换的数据类型,shape需要与self的shape一致。支持非连续的Tensor,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、other或out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self和other的数据类型和数据格式不在支持的范围之内。
- self和other不满足数据类型推导规则。
- 推导出的数据类型无法转换为指定输出out的类型。
- self的维度大于8。
aclnnFloorDivides
- 接口定义:
aclnnStatus aclnnFloorDivides(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnFloorDividesGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
aclnnInplaceFloorDividesGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnInplaceFloorDividesGetWorkspaceSize(aclTensor* selfRef, const aclScalar* other, uint64_t* workspaceSize, aclOpExecutor** executor)
- 参数说明:
- selfRef:Device侧的aclTensor,输入/输出张量,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BFLOAT16(仅Atlas A2训练系列产品支持),且数据类型需要与other构成数据类型推导规则。支持非连续的Tensor,数据格式支持ND。
- other:Host侧的aclScalar,输入张量,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL、BFLOAT16(仅Atlas A2训练系列产品支持),且数据类型需要与selfRef构成数据类型推导规则。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的selfRef、other是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- selfRef和other的数据类型和数据格式不在支持的范围之内。
- selfRef和other不满足数据类型推导规则。
- 参数selfRef的维度大于8。
aclnnInplaceFloorDivides
- 接口定义:
aclnnStatus aclnnInplaceFloorDivides(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnInplaceFloorDividesGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_floor_divide.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {4, 2};
std::vector<int64_t> otherShape = {4, 2};
std::vector<int64_t> outShape = {4, 2};
void* selfDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclScalar* other = nullptr;
aclTensor* out = nullptr;
std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0};
float otherValue = 2.0f;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建other aclScalar
other = aclCreateScalar(&otherValue, aclDataType::ACL_FLOAT);
CHECK_RET(other != nullptr, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3.调用CANN算子库API,需要修改为具体的算子接口
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnFloorDivides第一段接口
ret = aclnnFloorDividesGetWorkspaceSize(self, other, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnFloorDividesGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnFloorDivides第二段接口
ret = aclnnFloorDivides(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnFloorDivides failed. ERROR: %d\n", ret); return ret);
uint64_t inplaceWorkspaceSize = 0;
aclOpExecutor* inplaceExecutor;
// 调用aclnnInplaceFloorDivides第一段接口
ret = aclnnInplaceFloorDividesGetWorkspaceSize(self, other, &inplaceWorkspaceSize, &inplaceExecutor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceFloorDividesGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* inplaceWorkspaceAddr = nullptr;
if (inplaceWorkspaceSize > 0) {
ret = aclrtMalloc(&inplaceWorkspaceAddr, inplaceWorkspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnInplaceFloorDivides第二段接口
ret = aclnnInplaceFloorDivides(inplaceWorkspaceAddr, inplaceWorkspaceSize, inplaceExecutor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceFloorDivides failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
auto inplaceSize = GetShapeSize(selfShape);
std::vector<float> inplaceResultData(inplaceSize, 0);
ret = aclrtMemcpy(inplaceResultData.data(), inplaceResultData.size() * sizeof(inplaceResultData[0]), selfDeviceAddr,
inplaceSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < inplaceSize; i++) {
LOG_PRINT("inplaceResult[%ld] is: %f\n", i, inplaceResultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyScalar(other);
aclDestroyTensor(out);
return 0;
}
父主题: NN类算子接口
