aclnnEmbeddingDenseBackward
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnEmbeddingDenseBackwardGetWorkspaceSize(const aclTensor *grad, const aclTensor *indices, uint64_t numWeights, uint64_t paddingIdx, bool scaleGradByFreq, const aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnEmbeddingDenseBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
算子功能:aclnnEmbedding的反向运算(Embedding正向是指将数据集合映射到向量空间,进而将数据进行量化)。
aclnnEmbeddingDenseBackwardGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnEmbeddingDenseBackwardGetWorkspaceSize(const aclTensor *grad, const aclTensor *indices, uint64_t numWeights, uint64_t paddingIdx, bool scaleGradByFreq, const aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- grad:梯度张量,Device侧的aclTensor。数据类型支持FLOAT16、FLOAT。shape和正向输出的shape一致,支持非连续的Tensor,数据格式支持ND,比indices的维度多一维。
- indices:正向中需要映射到向量空间的索引张量,Device侧的aclTensor。数据类型支持FLOAT16、FLOAT、DOUBLE、UINT8、INT8、INT16、INT32、INT64、BOOL,实际计算时会转为INT32。支持非连续的Tensor,数据格式支持ND。
- numWeights:向量空间的大小。
- paddingIdx:填充ID,默认为None。如果指定的话,将指定位置处的向量元素全部置为0,且paddingIdx对应的参数不会对梯度产生影响。
- scaleGradByFreq:根据单词出现的频率,对梯度进行放缩,默认为False。
- out:反向输出的张量,数据类型支持FLOAT16、FLOAT32,数据格式仅支持2D。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的grad、indices、out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- grad、indices、out的数据类型和数据格式不在支持的范围内。
- grad、indices的维度关系不匹配。
aclnnEmbeddingDenseBackward
- 接口定义:
aclnnStatus aclnnEmbeddingDenseBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnEmbeddingDenseBackwardGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_embedding_dense_backward.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
uint64_t numWeights = 4;
uint64_t paddingIdx = 0;
bool scaleGradByFreq = false;
std::vector<int64_t> gradOutputShape = {2, 3};
std::vector<int64_t> indicesShape = {2};
std::vector<int64_t> outShape = {4, 3};
void* gradOutputDeviceAddr = nullptr;
void* indicesDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* gradOutput = nullptr;
aclTensor* indices = nullptr;
aclTensor* out = nullptr;
std::vector<float> gradOutputHostData = {1, 2, 3, 4, 5, 6};
std::vector<int64_t> indicesHostData = {1, 2};
std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// 创建gradOutput aclTensor
ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建indices aclTensor
ret = CreateAclTensor(indicesHostData, indicesShape, &indicesDeviceAddr, aclDataType::ACL_INT64, &indices);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnEmbeddingDenseBackward第一段接口
ret = aclnnEmbeddingDenseBackwardGetWorkspaceSize(gradOutput, indices, numWeights, paddingIdx, scaleGradByFreq, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnEmbeddingDenseBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnEmbeddingDenseBackward第二段接口
ret = aclnnEmbeddingDenseBackward(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnEmbeddingDenseBackward failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]),
outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy resultData from device to host failed. ERROR: %d\n", ret);
return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("resultData[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(gradOutput);
aclDestroyTensor(indices);
aclDestroyTensor(out);
return 0;
}
父主题: NN类算子接口