aclnnDropoutBackward
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnDropoutBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* mask, double scale, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
- 第二段接口:aclnnStatus aclnnDropoutBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:Dropout算子(aclnnDropout)的反向计算。训练过程中,根据mask中对应bit位的值,将输入中的元素置零,并按照scale的比例缩放。
- 计算公式:
aclnnDropoutBackwardGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnDropoutBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* mask, double scale, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
- 参数说明:
- gradOutput(aclTensor*, 计算输入): 公式中的输入gradOutput,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持),支持非连续的Tensor,数据格式支持ND。
- mask(aclTensor*, 计算输入): bit类型并使用UINT8类型存储的mask数据。数据类型支持UINT8,shape需要为(ceil(input的元素个数,128)/8)。支持非连续的Tensor。数据格式支持ND。
- scale(double, 计算输入):公式中的输入scale,输出数据缩放比例。
- out(aclTensor*, 计算输出):公式中的out,数据类型需要是gradOutput可转换的数据类型,shape需要与input一致,支持非连续的Tensor,数据格式支持ND。
- workspaceSize(uint64_t*, 出参):返回用户需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的gradOutput、mask、out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- gradOutput、mask、out的数据类型不在支持的范围内。
- 计算得出的p值不在0和1之间。
- gradOutput和out的shape不一致。
- mask的shape不满足条件。
aclnnDropoutBackward
- 接口定义:
aclnnStatus aclnnDropoutBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存起址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnDropoutBackwardGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_dropout_backward.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> gradOutputShape = {4, 2};
std::vector<int64_t> maskShape = {16};
std::vector<int64_t> outShape = {4, 2};
void* gradOutputDeviceAddr = nullptr;
void* maskDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* gradOutput = nullptr;
aclTensor* mask = nullptr;
aclTensor* out = nullptr;
std::vector<float> gradOutputHostData = {0, 1, 2, 3, 4, 5, 6, 7};
std::vector<uint8_t> maskHostData(16, 0);
maskHostData[0] = 42;
std::vector<float> outHostData(8, 0);
double scale = 2;
// 创建gradOutput aclTensor
ret =
CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建mask aclTensor
ret = CreateAclTensor(maskHostData, maskShape, &maskDeviceAddr, aclDataType::ACL_UINT8, &mask);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3.调用CANN算子库API,需要修改为具体的算子接口
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnDropoutBackward第一段接口
ret = aclnnDropoutBackwardGetWorkspaceSize(gradOutput, mask, scale, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnDropoutBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnDropoutBackward第二段接口
ret = aclnnDropoutBackward(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnDropoutBackward failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar
aclDestroyTensor(gradOutput);
aclDestroyTensor(mask);
aclDestroyTensor(out);
return 0;
}
父主题: NN类算子接口
