昇腾社区首页
中文
注册

aclnnConvTbcBackward

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnConvTbcBackwardGetWorkspaceSize(const aclTensor *self, const aclTensor *input, const aclTensor *weight, const aclTensor *bias, const int64_t pad, aclTensor *gradInput, aclTensor *gradWeight, aclTensor *gradBias, int8_t cubeMathType, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnConvTbcBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:用于计算时序卷积(aclnnConvTbc)的反向传播。
  • 计算公式:

    假设aclnnConvTbc正向输入input的shape是 (Hin​, N, Cin​) ,输出梯度gradOutput的shape是 (Hout​, N, Cout​),卷积核weight的shape是 (K, Cin​, Cout​),偏置bias的shape为 (Cout​)。

    输入张量input的梯度输出gradInput(t, b, c)​将被表示为:

    卷积核weight的梯度输出gradWeight(t, b, c)​将被表示为:

    偏置bias的梯度输出grad_bias将被表示为:

aclnnConvTbcBackwardGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnConvTbcBackwardGetWorkspaceSize(const aclTensor *self, const aclTensor *input, const aclTensor *weight, const aclTensor *bias, const int64_t pad, int8_t cubeMathType, aclTensor *gradInput, aclTensor *gradWeight, aclTensor *gradBias, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor,计算公式中的gradOutput,数据类型支持FLOAT、FLOAT16,数据类型与input、weight一致,支持非连续的Tensor,数据格式支持NCL。
    • input:Device侧的aclTensor,计算公式中的input,数据类型支持FLOAT、FLOAT16,数据类型与self、weight一致,支持非连续的Tensor, 数据格式为NCL。
    • weight:Device侧的aclTensor,计算公式中的weight,数据类型支持FLOAT、FLOAT16,数据类型与self、input一致,支持非连续的Tensor,数据格式为NCL。
    • bias:Device侧的aclTensor,计算公式中的bias,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式为ND。
    • pad:Host侧整型,表示T维度上左右填充的个数,数据类型支持INT64。
    • cubeMathType:Host侧的整型,判断Cube单元应该使用哪种计算逻辑进行运算,支持INT8类型的枚举值,枚举值如下:
      • 0:KEPP_DTYPE,保持输入的数据类型进行计算。
      • 1:ALLOW_FP32_DOWN_PRECISION,允许转换输入数据类型降低精度计算。
    • gradInput:Device侧的aclTensor,计算公式中的gradInput,数据类型仅支持FLOAT、FLOAT16,数据类型与input类型一致, 数据格式为NCL。
    • gradWeight:Device侧的aclTensor,计算公式中的gradWeight,数据类型仅支持FLOAT、FLOAT16,数据类型与weight类型一致, 数据格式为NCL。
    • gradBias:Device侧的aclTensor,计算公式中的gradBias,数据类型仅支持FLOAT、FLOAT16,数据类型与bias类型一致, 数据格式为NCL。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的指针类型入参是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self、input、weight、bias、gradInput、gradWeight、gradBias数据类型和数据格式不在支持的范围之内。
      • self、input、weight、output数据类型不一致。
      • gradInput、gradWeight、gradBias的shape不满足推导的shape结果。
      • gradInput、gradWeight、gradBias的shape中存在小于0的值。
      • self、input、weight的dim不为3。
      • bias的dim不为1。
      • input的第三个维度值不等于weight的第2个维度值。
      • bias的值不等于weight的第三个维度值。

aclnnConvTbcBackward

  • 接口定义:

    aclnnStatus aclnnConvTbcBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnConvTbcBackwardGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_convolution_backward.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }
  // 调用aclCreateTensor接口创建aclTensor
  if (shape.size() == 4) {
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW,
                              shape.data(), shape.size(), *deviceAddr);
  } else {
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);   
  }
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {5, 1, 2};
  std::vector<int64_t> inputShape = {5, 1, 2};
  std::vector<int64_t> weightShape = {1, 2, 2};
  std::vector<int64_t> biasShape = {2};
  const int64_t pad = 0;
  int8_t cubeMathType = 1;
  std::vector<int64_t> gradInputShape = {5, 1, 2};
  std::vector<int64_t> gradWeightShape = {1, 2, 2};
  std::vector<int64_t> gradBiasShape = {2};
  // 创建gradOut aclTensor
  std::vector<float> selfData(GetShapeSize(selfShape) * 2, 1);
  aclTensor* self = nullptr;
  void *selfDeviceAddr = nullptr;
  ret = CreateAclTensor(selfData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT16, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建input aclTensor
  std::vector<float> inputData(GetShapeSize(inputShape) * 2, 1);
  aclTensor* input = nullptr;
  void *inputDeviceAddr = nullptr;
  ret = CreateAclTensor(inputData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT16, &input);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建weight aclTensor
  std::vector<float> weightData(GetShapeSize(weightShape) * 2, 1);
  aclTensor* weight = nullptr;
  void *weightDeviceAddr = nullptr;
  ret = CreateAclTensor(weightData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建bias aclTensor
  std::vector<float> biasData(GetShapeSize(biasShape) * 2, 1);
  aclTensor* bias = nullptr;
  void *biasDeviceAddr = nullptr;
  ret = CreateAclTensor(biasData, biasShape, &biasDeviceAddr, aclDataType::ACL_FLOAT16, &bias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradInput aclTensor
  std::vector<float> gradInputData(GetShapeSize(gradInputShape) * 2, 1);
  aclTensor* gradInput = nullptr;
  void *gradInputDeviceAddr = nullptr;
  ret = CreateAclTensor(gradInputData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT16, &gradInput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradWeight aclTensor
  std::vector<float> gradWeightData(GetShapeSize(gradWeightShape) * 2, 1);
  aclTensor* gradWeight = nullptr;
  void *gradWeightDeviceAddr = nullptr;
  ret = CreateAclTensor(gradWeightData, gradWeightShape, &gradWeightDeviceAddr, aclDataType::ACL_FLOAT16, &gradWeight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradBias aclTensor
  std::vector<float> gradBiasData(GetShapeSize(gradBiasShape) * 2, 1);
  aclTensor* gradBias = nullptr;
  void *gradBiasDeviceAddr = nullptr;
  ret = CreateAclTensor(gradBiasData, gradBiasShape, &gradBiasDeviceAddr, aclDataType::ACL_FLOAT16, &gradBias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnConvTbcBackwardGetWorkspaceSize第一段接口
  ret = aclnnConvTbcBackwardGetWorkspaceSize(self, input, weight, bias, pad, cubeMathType, gradInput,
                                                 gradWeight, gradBias, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvTbcBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnConvTbcBackward第二段接口
  ret = aclnnConvTbcBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvTbcBackward failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(gradInputShape);
  std::vector<float> gradInputResult(size, 0);
  ret = aclrtMemcpy(gradInputResult.data(), gradInputResult.size() * sizeof(gradInputResult[0]), gradInputDeviceAddr,
                    size * sizeof(gradInputResult[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("gradInputResult[%ld] is: %f\n", i, gradInputResult[i]);
  }
  size = GetShapeSize(gradWeightShape);
  std::vector<float> gradWeightResult(size, 0);
  ret = aclrtMemcpy(gradWeightResult.data(), gradWeightResult.size() * sizeof(gradWeightResult[0]), gradWeightDeviceAddr,
                    size * sizeof(gradWeightResult[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("gradWeightResult[%ld] is: %f\n", i, gradWeightResult[i]);
  }
  size = GetShapeSize(gradBiasShape);
  std::vector<float> gradBiasResult(size, 0);
  ret = aclrtMemcpy(gradBiasResult.data(), gradBiasResult.size() * sizeof(gradBiasResult[0]), gradInputDeviceAddr,
                    size * sizeof(gradBiasResult[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("gradBiasResult[%ld] is: %f\n", i, gradBiasResult[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(input);
  aclDestroyTensor(weight);
  aclDestroyTensor(bias);
  aclDestroyTensor(gradInput);
  aclDestroyTensor(gradWeight);
  aclDestroyTensor(gradBias);

    // 7. 释放device资源,需要根据具体API的接口定义参数
  aclrtFree(selfDeviceAddr);
  aclrtFree(inputDeviceAddr);
  aclrtFree(weightDeviceAddr);
  aclrtFree(biasDeviceAddr);
  aclrtFree(gradInputDeviceAddr);
  aclrtFree(gradWeightDeviceAddr);
  aclrtFree(gradBiasDeviceAddr);
  if (workspaceSize > 0) {
      aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtDestroyContext(context);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}