aclnnConvDepthwise2d
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnConvDepthwise2dGetWorkspaceSize(const aclTensor *self, const aclTensor *weight, const aclIntArray *kernelSize, const aclTensor *bias, const aclIntArray *stride, const aclIntArray *padding, const aclIntArray *dilation, aclTensor *out, int8_t cubeMathType, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnConvDepthwise2d(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
aclnnConvDepthwise2dGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnConvDepthwise2dGetWorkspaceSize(const aclTensor *self, const aclTensor *weight, const aclIntArray *kernelSize, const aclTensor *bias, const aclIntArray *stride, const aclIntArray *padding, const aclIntArray *dilation, aclTensor *out, int8_t cubeMathType, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self(aclTensor*, 计算输入):公式中的输入self,数据类型支持FLOAT、FLOAT16。支持非连续的Tensor,数据格式支持NCHW(NHWC)。
- weight(aclTensor*,计算输入):公式中的输入weight,数据类型支持FLOAT、FLOAT16。支持非连续的Tensor,数据格式支持NCHW。weight第一维数值应等于self通道数的整数倍。H、W两维的数值需小于self的H、W两维的数值。
- kernelSize(const aclIntArray *, 计算输入):卷积核尺寸,(int, int)型的元组。
- bias(aclTensor*,计算输入):公式中的bias,数据类型支持FLOAT、FLOAT16。支持非连续的Tensor,数据格式支持NCHW。仅支持一维且数值需要与weight第一维相等。
- stride(const aclIntArray *, 计算输入):卷积扫描步长,数组长度需等于1或者self的维度减2。
- padding(const aclIntArray *, 计算输入):对self的填充,数组长度需等于1或者self的维度减 2。
- dilation(const aclIntArray *, 计算输入):卷积核中元素的间隔,数组长度需等于1或者self的维度减 2。
- out(aclTensor*, 计算输出):公式中的out,数据类型支持FLOAT、FLOAT16。支持非连续的Tensor,数据格式支持NCHW。out通道数应等于weight第一维的数值。
- cubeMathType:Host侧的整型,判断Cube单元应该使用哪种计算逻辑进行运算,支持INT8类型的枚举值,枚举值如下:
- 0:KEPP_DTYPE,保持输入的数据类型进行计算。
- 1:ALLOW_FP32_DOWN_PRECISION,允许转换输入数据类型降低精度计算。
- workspaceSize(uint64_t*, 出参):返回用户需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的指针型入参是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self、weight、bias、out的数据类型和数据格式不在支持的范围内。
- stride、padding输入的shape不对。
- self、weight、bias、out的数据类型不一致。
- weight和self的通道数不满足要求。
- out的shape不满足infershape结果。
- self、weight或bias为空Tensor。
aclnnConvDepthwise2d
- 接口定义:
aclnnStatus aclnnConvDepthwise2d(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnConvDepthwise2dGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_convolution.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i: shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateContext(context, deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetCurrentContext(*context);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtContext context;
aclrtStream stream;
auto ret = Init(deviceId, &context, &stream);
// check根据自己的需要处理
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> shapeSelf = {2, 2, 2, 2};
std::vector<int64_t> shapeWeight = {2, 1, 1, 1};
std::vector<int64_t> shapeBias = {2};
std::vector<int64_t> shapeResult = {2, 2, 4, 4};
void* deviceDataSelf = nullptr;
void* deviceDataWeight = nullptr;
void* deviceDataBias = nullptr;
void* deviceDataResult = nullptr;
aclTensor* self = nullptr;
aclTensor* weight = nullptr;
aclTensor* bias = nullptr;
aclTensor* result = nullptr;
aclIntArray* kernelSize = nullptr;
aclIntArray* stride = nullptr;
aclIntArray* padding = nullptr;
aclIntArray* dilation = nullptr;
std::vector<float> selfData(GetShapeSize(shapeSelf) * 2, 1);
std::vector<float> weightData(GetShapeSize(shapeWeight) * 2, 1);
std::vector<float> biasData(GetShapeSize(shapeBias) * 2, 1);
std::vector<float> outData(GetShapeSize(shapeResult) * 2, 1);
std::vector<int64_t> kernelSizeData = {1, 1};
std::vector<int64_t> strideData = {1, 1};
std::vector<int64_t> paddingData = {1, 1};
std::vector<int64_t> dilationData = {1, 1};
// 创建self aclTensor
ret = CreateAclTensor(selfData, shapeSelf, &deviceDataSelf, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建weight aclTensor
ret = CreateAclTensor(weightData, shapeWeight, &deviceDataWeight, aclDataType::ACL_FLOAT, &weight);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasData, shapeBias, &deviceDataBias, aclDataType::ACL_FLOAT, &bias);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outData, shapeResult, &deviceDataResult, aclDataType::ACL_FLOAT, &result);
CHECK_RET(ret == ACL_SUCCESS, return ret);
kernelSize = aclCreateIntArray(kernelSizeData.data(), 2);
stride = aclCreateIntArray(strideData.data(), 2);
padding = aclCreateIntArray(paddingData.data(), 2);
dilation = aclCreateIntArray(dilationData.data(), 2);
// 3. 调用CANN算子库API,需要修改为具体的算子接口
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnConvDepthwise2d第一段接口
ret = aclnnConvDepthwise2dGetWorkspaceSize(self, weight, kernelSize, bias, stride, padding, dilation, result, 1, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvDepthwise2dGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnConvDepthwise2d第二段接口
ret = aclnnConvDepthwise2d(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvDepthwise2d failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(shapeResult);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), deviceDataResult,
size * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(weight);
aclDestroyTensor(bias);
aclDestroyTensor(result);
aclDestroyIntArray(kernelSize);
aclDestroyIntArray(stride);
aclDestroyIntArray(padding);
aclDestroyIntArray(dilation);
return 0;
}
父主题: NN类算子接口
