根据模型框架选择对应示例。
root@ubuntu:/data/atlas_dls/public/dataset/resnet50/imagenet_TF# pwd /data/atlas_dls/public/dataset/resnet50/imagenet_TF
root@ubuntu:/data/atlas_dls/public/dataset/resnet50/imagenet_TF# du -sh 42G
/data/atlas_dls/public/code/ResNet50_for_TensorFlow_2.6_code/ ├── scripts │ ├── train_start.sh │ ... │ ... ├── tensorflow │ ├── resnet_ctl_imagenet_main.py │ ├── resnet_model.py │ ├── resnet_runnable.py │ ... │ ... ├── benchmark.sh ├── modelzoo_level.txt ... └── requirements.txt
root@ubuntu:/data/atlas_dls/public/dataset/resnet50/imagenet# pwd /data/atlas_dls/public/dataset/resnet50/imagenet
root@ubuntu:/data/atlas_dls/public/dataset/resnet50/imagenet# du -sh 11G
root@ubuntu:/data/atlas_dls/public/code/ResNet50_for_PyTorch_1.8_code/# ResNet50_for_PyTorch_1.8_code/ ├── DistributedResnet50 ├── infer ├── test ├── ... ├── Dockerfile ├── eval.sh ├── python2onx.py ├── pytorch_resnet50_apex.py └── scripts ├── train_start.sh
root@ubuntu:/data/atlas_dls/public/dataset/imagenet# pwd /data/atlas_dls/public/dataset/imagenet
root@ubuntu:/data/atlas_dls/public/dataset/imagenet# du -sh 11G
root@ubuntu:/data/atlas_dls/public/code/ResNet50_for_MindSpore_2.0_code/scripts/# scripts/ ├── docker_start.sh ├── run_standalone_train_gpu.sh ├── run_standalone_train.sh ... └── train_start.sh
... if config.run_distribute: if target == "Ascend": #device_id = int(os.getenv('DEVICE_ID')) #ms.set_context(device_id=device_id) ms.set_auto_parallel_context(device_num=config.device_num, parallel_mode=ms.ParallelMode.DATA_PARALLEL, gradients_mean=True) set_algo_parameters(elementwise_op_strategy_follow=True) if config.net_name == "resnet50" or config.net_name == "se-resnet50": if config.boost_mode not in ["O1", "O2"]: ms.set_auto_parallel_context(all_reduce_fusion_config=config.all_reduce_fusion_config) elif config.net_name in ["resnet101", "resnet152"]: ms.set_auto_parallel_context(all_reduce_fusion_config=config.all_reduce_fusion_config) init() # GPU target ...