根据模型框架选择对应示例。
root@ubuntu:/data/atlas_dls/public/dataset/resnet50/imagenet_TF# pwd /data/atlas_dls/public/dataset/resnet50/imagenet_TF
root@ubuntu:/data/atlas_dls/public/dataset/resnet50/imagenet_TF# du -sh 42G
/data/atlas_dls/public/code/ResNet50_for_TensorFlow_2.6_code/ ├── scripts │ ├── train_start.sh │ ├── utils.sh │ ├── rank_table.sh │ ... │ ... ├── tensorflow │ ├── resnet_ctl_imagenet_main.py │ ├── resnet_model.py │ ├── resnet_runnable.py │ ... │ ... ├── benchmark.sh ├── modelzoo_level.txt ... └── requirements.txt
root@ubuntu:/data/atlas_dls/public/dataset/resnet50/imagenet# pwd /data/atlas_dls/public/dataset/resnet50/imagenet
root@ubuntu:/data/atlas_dls/public/dataset/resnet50/imagenet# du -sh 11G
root@ubuntu:/data/atlas_dls/public/code/ResNet50_for_PyTorch_1.8_code/# ResNet50_for_PyTorch_1.8_code/ ├── DistributedResnet50 ├── infer ├── test ├── ... ├── Dockerfile ├── eval.sh ├── python2onx.py ├── pytorch_resnet50_apex.py └── scripts ├── train_start.sh ├── utils.sh └── rank_table.sh
root@ubuntu:/data/atlas_dls/public/dataset/imagenet# pwd /data/atlas_dls/public/dataset/imagenet
root@ubuntu:/data/atlas_dls/public/dataset/imagenet# du -sh 11G
root@ubuntu:/data/atlas_dls/public/code/ResNet50_for_MindSpore_2.0_code/scripts/# scripts/ ├── cache_util.sh ├── docker_start.sh ├── run_standalone_train_gpu.sh ├── run_standalone_train.sh ... ├── rank_table.sh ├── utils.sh └── train_start.sh