torch.compile路线分图特性

以下代码将手动把tanh算子fallback到torch_npu执行,与torch_npu的配套使用时请参见配套Torch_NPU使用安装torch_npu环境。

示例代码如下所示:
import torch
import torch.nn as nn
import torch_npu
import mindietorch

mindietorch.set_device(device_id)

class Test(nn.Module):
    def forward(self, x):
        x = torch.ops.aten.relu.default(x)
        x= torch.ops.aten.tanh.default(x)
        out = torch.ops.aten.sigmoid.default(x)
        return out
shape = (2, 2)
input = torch.randn(shape)
model = Test().to("npu")
backend_kwargs = {
    "torch_executed_ops": [torch.ops.aten.tanh.default],
    "min_block_size": 1,
}
opt_model = torch.compile(model, backend="mindie", options=backend_kwargs)
device_id = 0
npu_input = input.to("npu")
infer_ret = compiled_model(npu_input)[0].to("cpu")