本章节将指导用户了解配置进程级在线恢复的关键步骤。进程级在线恢复的特性介绍、使用约束、支持的产品型号及原理请参见进程级在线恢复。
使用Dockerfile构建容器镜像,新增启动命令。
# MindCluster断点续训适配脚本,MINDX_ELASTIC_PKG为Elastic Agent whl安装包的路径,MINDIO_TTP_PKG为MindIO的whl安装包的路径,请根据实际情况填写 RUN pip3 install $MINDX_ELASTIC_PKG RUN pip3 install $MINDIO_TTP_PKG # 可选,使用优雅容错、Pod级别重调度或进程级别重调度时必须配置以下命令 RUN sed -i '/import logging/i import mindx_elastic.api' $(pip3 show torch | grep Location | awk -F ' ' '{print $2}')/torch/distributed/run.py # 可选,MindSpore框架下,使用进程级在线恢复需配置以下命令 RUN pip install $TASKD_WHL
在任务YAML中,新增以下字段,开启进程级别恢复。其中process-recover-enable是训练进程恢复的统一开关,打开后训练进程恢复才生效。recover-strategy是训练进程恢复使用的策略,其中的retry代表开启进程级在线恢复。
... labels: ... process-recover-enable: "on" fault-scheduling: "force" ... ... annotations: ... recover-strategy: "retry" # 任务可用恢复策略(retry:进程级在线恢复;recover:进程级别重调度;dump:保存临终遗言;exit:退出训练),四种策略可随意组合,策略之间由逗号分割 ... ... spec: replicaSpecs: Master: template: spec: containers: - name: ascend # do not modify env: - name: PROCESS_RECOVER # 开启进程级别重调度需注入该环境变量 value: "on" args: - | ... export ELASTIC_PROCESS_RECOVER_ENABLE=1; ... bash scripts/train_start.sh /job/code /job/output pretrain_gpt.py \ ... --enable-high-availability \ --enable-hbmfault-repair \ ... Worker: template: spec: containers: - name: ascend # do not modify env: - name: PROCESS_RECOVER # 开启进程级别重调度需注入该环境变量 value: "on" args: - | ... export ELASTIC_PROCESS_RECOVER_ENABLE=1; ... bash scripts/train_start.sh /job/code /job/output pretrain_gpt.py \ ... --enable-high-availability \ --enable-hbmfault-repair \ ... ...
(可选)用户可以在启动训练的shell脚本(例如train_start.sh)中,新增max_restarts和monitor_interval参数,示例如下。
... logger "server id is: ""${server_id}" if [ "${framework}" == "PyTorch" ]; then get_env_for_pytorch_multi_node_job DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT --max_restarts 5 --monitor_interval 10 "