注意:分析迁移工具的模型列表仅供参考,备注中示例的行数仅为参考,请以实际所在行数为准。
序号 |
模型 |
原始训练工程代码链接参考 |
备注 |
---|---|---|---|
1 |
3D-Transformer-tr_spe |
https://github.com/smiles724/Molformer/tree/f5cad25e037b0a63c7370c068a9c477f4004c5ea |
- |
2 |
3D-Transformer-tr_cpe |
||
3 |
3D-Transformer-tr_full |
||
4 |
AFM |
https://github.com/shenweichen/DeepCTR-Torch/tree/b4d8181e86c2165722fa9331bc16185832596232 |
|
5 |
AutoInt |
||
6 |
CCPM |
||
7 |
DCN |
||
8 |
DeepFM |
||
9 |
DIN |
||
10 |
FiBiNET |
||
11 |
MLR |
||
12 |
NFM |
||
13 |
ONN |
||
14 |
PNN |
||
15 |
WDL |
||
16 |
xDeepFM |
||
17 |
AFN |
https://github.com/shenweichen/DeepCTR-Torch/tree/2cd84f305cb50e0fd235c0f0dd5605c8114840a2 |
|
18 |
DCNMix |
||
19 |
DIFM |
||
20 |
IFM |
||
21 |
BERT |
https://github.com/codertimo/BERT-pytorch/tree/d10dc4f9d5a6f2ca74380f62039526eb7277c671 |
|
22 |
BEiT |
https://github.com/microsoft/unilm/tree/9cbfb3e40eedad33a8d2f1f15c4a1e26fa50a5b1 |
|
23 |
BiT-M-R101x1 |
https://github.com/google-research/big_transfer/tree/140de6e704fd8d61f3e5ea20ffde130b7d5fd065 |
|
24 |
BiT-M-R101x3 |
||
25 |
BiT-M-R152x2 |
||
26 |
BiT-M-R152x4 |
||
27 |
BiT-M-R50x1 |
||
28 |
BiT-M-R50x3 |
||
29 |
BiT-S-R101x1 |
||
30 |
BiT-S-R101x3 |
||
31 |
BiT-S-R152x2 |
||
32 |
BiT-S-R152x4 |
||
33 |
BiT-S-R50x1 |
||
34 |
BiT-S-R50x3 |
||
35 |
ADMMSLIM |
https://github.com/RUCAIBox/RecBole/tree/6e66565347a71c6f9662f9e7366a55c35be4fa46 |
|
36 |
BERT4REC |
||
37 |
BPR |
||
38 |
CASER |
||
39 |
CDAE |
||
40 |
CFKG |
||
41 |
CKE |
||
42 |
CONVNCF |
||
43 |
DGCF |
||
44 |
DMF |
||
45 |
DSSM |
||
46 |
EASE |
||
47 |
ENMF |
||
48 |
FFM |
||
49 |
FISM |
||
50 |
FWFM |
||
51 |
GCMC |
||
52 |
HGN |
||
53 |
KGCN |
||
54 |
NCL |
||
55 |
REPEATNET |
||
56 |
SLIMELASTIC |
||
57 |
CenterNet-ResNet50 |
https://github.com/bubbliiiing/centernet-pytorch/tree/91b63b9d0fef2e249fbddee8266c79377f0c7946 |
|
58 |
CenterNet-HourglassNet |
||
59 |
Conformer-tiny |
https://github.com/pengzhiliang/Conformer/tree/815aaad3ef5dbdfcf1e11368891416c2d7478cb1 |
|
60 |
Conformer-small |
||
61 |
Conformer-base |
||
62 |
DeiT-tiny |
||
63 |
DeiT-small |
||
64 |
DeiT-base |
||
65 |
CvT-13 |
https://github.com/microsoft/CvT/tree/f851e681966390779b71380d2600b52360ff4fe1 |
|
66 |
CvT-21 |
||
67 |
CvT-W24 |
||
68 |
albert-base-v1 |
https://github.com/huggingface/transformers/tree/49cd736a288a315d741e5c337790effa4c9fa689 |
|
69 |
albert-large-v1 |
||
70 |
albert-xlarge-v1 |
||
71 |
albert-xxlarge-v1 |
||
72 |
albert-Text classification |
||
73 |
albert-TokenClassification |
||
74 |
albert-QA |
||
75 |
albert-MultipleChoice |
||
76 |
bert-base-uncased |
||
77 |
bert-large-uncased |
||
78 |
bert-base-QA |
||
79 |
bert-base-Text classification |
||
80 |
bert-base-Multiple Choice |
||
81 |
bert-base-token-classification |
||
82 |
distilbert-base-uncased |
||
83 |
distilbert-base-QA |
||
84 |
distilbert-base-Text classification |
||
85 |
roberta-base |
||
86 |
roberta-large |
||
87 |
roberta-base-Multiple Choice |
||
88 |
roberta-base-Text classification |
||
89 |
roberta-base-token-classification |
||
90 |
roberta-base-QA |
||
91 |
xlm-mlm-en-2048 |
||
92 |
xlm-mlm-ende-1024 |
||
93 |
xlm-mlm-enro-1024 |
||
94 |
xlm-clm-enfr-1024 |
||
95 |
xlm-Text classification |
||
96 |
xlm-Roberta-base |
||
97 |
xlm-roberta-large |
||
98 |
xlm-roberta-Text classification |
||
99 |
Xlm-reberta-token-classification |
||
100 |
xlm-roberta-QA |
||
101 |
xlnet-base-cased |
||
102 |
xlnet-large-cased |
||
103 |
XLNet-base-Text classification |
||
104 |
XLNet-base-token-classification |
||
105 |
XLNet-base-Multiple Choice |
||
106 |
XLNet-base-QA |
||
107 |
DistilRoBERTa |
迁移后,请进行以下修改: 修改./src/transformers/utils/import_utils.py中的is_torch_available()定义。 修改前:
def is_torch_available(): return _torch_available 修改后: def is_torch_available(): return True |
|
108 |
Transform-XL |
迁移后,请进行以下修改:
|
|
109 |
ConvLSTM |
https://github.com/jhhuang96/ConvLSTM-PyTorch/tree/d44942983c05c66381eeb9f54e88c828e9e37cfc |
|
110 |
DeepCTR-Deep & Cross Network |
https://github.com/shenweichen/DeepCTR-Torch/tree/2cd84f305cb50e0fd235c0f0dd5605c8114840a2 |
|
111 |
DeepCTR-Deep & Wide |
https://github.com/shenweichen/DeepCTR-Torch/tree/2cd84f305cb50e0fd235c0f0dd5605c8114840a2 |
|
112 |
EfficientNet-B0 |
https://github.com/lukemelas/EfficientNet-PyTorch/tree/7e8b0d312162f335785fb5dcfa1df29a75a1783a |
- |
113 |
EfficientNet-B1 |
||
114 |
EfficientNet-B2 |
||
115 |
EfficientNet-B3 |
||
116 |
EfficientNet-B4 |
||
117 |
EfficientNet-B5 |
||
118 |
EfficientNet-B6 |
||
119 |
EfficientNet-B7 |
||
120 |
EfficientNet-B8 |
||
121 |
egfr-att |
https://github.com/lehgtrung/egfr-att/tree/0666ee90532b1b1a7a2a179f8fbf10af1fdf862f |
- |
122 |
FasterRCNN |
https://github.com/AlphaJia/pytorch-faster-rcnn/tree/943ef668facaacf77a4822fe79331343a6ebca2d |
|
123 |
FCOS-ResNet50 |
https://github.com/zhenghao977/FCOS-PyTorch-37.2AP/tree/2bfa4b6ca57358f52f7bc7b44f506608e99894e6 |
迁移后需要进行以下修改。
|
124 |
FCOS-ResNet101 |
||
125 |
MGN-strong |
|
|
126 |
MobileNetV1 SSD |
https://github.com/qfgaohao/pytorch-ssd/tree/f61ab424d09bf3d4bb3925693579ac0a92541b0d |
MindSpore暂不支持数据集加载中使用Tensor和在模型中对ModuleList使用切片。因此迁移前需要对原始工程文件夹下./vision/ssd/ssd.py进行如下修改。
|
127 |
MobileNetV1 SSD-Lite |
||
128 |
MobileNetV2 SSD-Lite |
||
129 |
MobileNetV3-Large SSD-Lite |
||
130 |
MobileNetV3-Small SSD-Lite |
||
131 |
SqueezeNet SSD-Lite |
||
132 |
VGG16 SSD |
||
133 |
SqueezeNet |
https://github.com/weiaicunzai/pytorch-cifar100/tree/2149cb57f517c6e5fa7262f958652227225d125b |
|
134 |
InceptionV3 |
||
135 |
InceptionV4 |
||
136 |
InceptionResNetV2 |
||
137 |
Xception |
||
138 |
Attention56 |
||
139 |
StochasticDepth18 |
||
140 |
StochasticDepth34 |
||
141 |
StochasticDepth50 |
||
142 |
StochasticDepth101 |
||
143 |
VGG11 |
||
144 |
VGG13 |
||
145 |
VGG16 |
||
146 |
DenseNet161 |
||
147 |
DenseNet169 |
||
148 |
DenseNet201 |
||
149 |
PreActResNet34 |
||
150 |
PreActResNet50 |
||
151 |
PreActResNet101 |
||
152 |
PreActResNet152 |
||
153 |
ResNeXt152 |
||
154 |
SEResNet34 |
||
155 |
SEResNet50 |
||
156 |
SEResNet101 |
||
157 |
VGG19 |
https://github.com/kuangliu/pytorch-cifar/tree/49b7aa97b0c12fe0d4054e670403a16b6b834ddd |
|
158 |
PreActResNet18 |
||
159 |
DenseNet121 |
||
160 |
ResNeXt29_2x64d |
||
161 |
MobileNet |
||
162 |
MobileNetV2 |
||
163 |
SENet18 |
||
164 |
ShuffleNetG2 |
||
165 |
GoogleNet |
||
166 |
DPN92 |
||
167 |
RetineNet-ResNet34 |
https://github.com/yhenon/pytorch-retinanet/tree/0348a9d57b279e3b5b235461b472d37da5feec3d |
|
168 |
RetineNet-ResNet50 |
||
169 |
Res2Net |
https://github.com/Res2Net/Res2Net-ImageNet-Training/tree/d77c16ff111522c64e918900f100699acc62f706 |
暂不支持torchvision.models相关接口的迁移,需做以下操作。 修改原始工程:
|
170 |
ResNet18 |
https://github.com/pytorch/examples/tree/41b035f2f8faede544174cfd82960b7b407723eb/imagenet |
暂不支持torchvision.models相关接口的迁移,需做以下操作。 修改原始工程:
|
171 |
ResNet34 |
||
172 |
ResNet50 |
||
173 |
ResNet101 |
||
174 |
ResNet152 |
||
175 |
ResNeXt-50(32x4d) |
||
176 |
ResNeXt-101(32x8d) |
||
177 |
Wide ResNet-50-2 |
||
178 |
Wide ResNet-101-2 |
||
179 |
sparse_rcnnv1-resnet50 |
https://github.com/liangheming/sparse_rcnnv1/tree/65f54808f43c34639085b01f7ebc839a3335a386 |
迁移后,修改如下内容。
|
180 |
sparse_rcnnv1-resnet101 |
||
181 |
ShuffleNetV2 |
https://github.com/megvii-model/ShuffleNet-Series/tree/aa91feb71b01f28d0b8da3533d20a3edb11b1810 |
- |
182 |
ShuffleNetV2+ |
||
183 |
SMSD |
迁移前需要进行以下操作:
运行迁移后代码可通过--repeat参数控制训练重复次数(以SMSD_bi模型为例): python3 train.py --model_name SMSD_bi --repeat 1 |
|
184 |
SMSD_bi |
||
185 |
Swin-Transformer |
https://github.com/microsoft/Swin-Transformer/tree/5d2aede42b4b12cb0e7a2448b58820aeda604426 |
|
186 |
Transformer |
https://github.com/SamLynnEvans/Transformer/tree/e06ae2810f119c75aa34585442872026875e6462 |
需要对于该代码仓中脚本依赖的torchtext库进行迁移并有如下注意事项:
|
187 |
UNet |
https://github.com/milesial/Pytorch-UNet/tree/e1a69e7c6ce18edd47271b01e4aabc03b436753d |
进行静态图模式迁移前,需要进行以下操作: |
188 |
RCNN-Unet |
迁移前需要进行以下操作:
|
|
189 |
Attention Unet |
||
190 |
RCNN-Attention Unet |
||
191 |
Nested Unet |
||
192 |
ViT-B_16 |
https://github.com/jeonsworld/ViT-pytorch/tree/460a162767de1722a014ed2261463dbbc01196b6 |
数据集需要使用cifar-10-bin,可从https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz获取。 |
193 |
ViT-B_32 |
||
194 |
ViT-L_16 |
||
195 |
ViT-L_32 |
||
196 |
ViT-H_14 |
||
197 |
R50-ViT-B_16 |
||
198 |
YOLOR-CSP |
https://github.com/WongKinYiu/yolor/tree/462858e8737f56388f812cfe381a69c4ffca0cc7 |
迁移完成后需进行如下修改:
|
199 |
YOLOR-CSP-X |
||
200 |
YOLOR-P6 |
||
201 |
YOLOR-W6 |
||
202 |
YOLOv3 |
https://github.com/ultralytics/yolov3/tree/ae37b2daa74c599d640a7b9698eeafd64265f999 |
迁移完成后进行如下修改。
|
203 |
YOLOv3-Tiny |
||
204 |
YOLOv3-SSP |
||
205 |
YOLOv4 |
https://github.com/WongKinYiu/PyTorch_YOLOv4/tree/eb5f1663ed0743660b8aa749a43f35f505baa325 |
迁移完成后进行如下修改。
|
206 |
YOLOv4-tiny |
||
207 |
YOLOv4-pacsp |
||
208 |
YOLOv4-paspp |
||
209 |
YOLOv4-csp-leaky |
||
210 |
YOLOv5l |
https://github.com/ultralytics/yolov5/tree/8c420c4c1fb3b83ef0e60749d46bcc2ec9967fc5 |
迁移完成后进行如下修改。
|
211 |
YOLOv5m |
||
212 |
YOLOv5n |
||
213 |
YOLOv5s |
||
214 |
YOLOv5x |
||
215 |
YOLOX |
https://github.com/bubbliiiing/yolox-pytorch/tree/1448e849ac6cdd7d1cec395e30410f49a83d44ec |
迁移后,修改如下内容。
|
216 |
AAGCN-ABSA |
- |
|
217 |
CAER-ABSA |
|
|
218 |
GIN-ABSA |
|
|
219 |
Scon-ABSA |
|
|
220 |
Trans-ECE |
|
|
221 |
PyramidNet 101 |
https://github.com/dyhan0920/PyramidNet-PyTorch/tree/5a0b32f43d79024a0d9cd2d1851f07e6355daea2 |
迁移前,进行如下修改。
|
222 |
PyramidNet 164 bottleneck |
||
223 |
PyramidNet 200 bottleneck |
序号 |
模型 |
原始训练工程代码链接参考 |
备注 |
---|---|---|---|
1 |
ALBERT_base_v2 |
|
|
2 |
ALBERT_large_v2 |
||
3 |
ALBERT_xlarge_v2 |
||
4 |
ALBERT_xxlarge_v2 |
||
5 |
ALBERT_base_v1 |
||
6 |
ALBERT_large_v1 |
||
7 |
ALBERT_xlarge_v1 |
||
8 |
ALBERT_xxlarge_v1 |
||
9 |
roberta-base |
||
10 |
roberta-large |
||
11 |
RBT6 |
||
12 |
RBT4 |
||
13 |
RBTL3 |
||
14 |
RBT3 |
||
15 |
CIFAR-VGG |
https://github.com/dragen1860/TensorFlow-2.x-Tutorials/tree/9861a308283d17693d497fdfaab20b92c0b26d08 |
|
16 |
DenseNet_121 |
https://github.com/calmisential/Basic_CNNs_TensorFlow2/tree/f063c84451f12e904f9c91c51278be52afccb0c2 |
|
17 |
DenseNet_169 |
||
18 |
EfficientNet_B0 |
||
19 |
EfficientNet_B1 |
||
20 |
Inception_V4 |
||
21 |
MobileNet_V1 |
||
22 |
MobileNet_V2 |
||
23 |
MobileNet_V3_Large |
||
24 |
MobileNet_V3_Small |
||
25 |
ResNet_101 |
||
26 |
ResNet_152 |
||
27 |
ResNet_18 |
||
28 |
ResNet_34 |
||
29 |
ResNet_50 |
||
30 |
ResNext_101 |
||
31 |
ResNext_50 |
||
32 |
Shufflenet_V2_x0_5 |
||
33 |
Shufflenet_V2_x1_0 |
||
34 |
EfficientNet_B2 |
https://github.com/calmisential/Basic_CNNs_TensorFlow2/tree/f063c84451f12e904f9c91c51278be52afccb0c2 |
|
35 |
EfficientNet_B3 |
||
36 |
EfficientNet_B4 |
||
37 |
EfficientNet_B5 |
||
38 |
EfficientNet_B6 |
||
39 |
EfficientNet_B7 |
||
40 |
SE_ResNet_50 |
||
41 |
SE_ResNet_101 |
||
42 |
SE_ResNet_152 |
||
43 |
SE_ResNext_50 |
||
44 |
SE_ResNext_101 |
||
45 |
DenseNet_201 |
||
46 |
DenseNet_264 |
||
47 |
AFM |
各个网络文件夹均依赖./data_process/目录,请直接迁移Recommender-System-with-TF2.0/目录或将./data_process/复制至网络文件夹下后再进行迁移。 |
|
48 |
Caser |
||
49 |
DCN |
||
50 |
Deep_Crossing |
||
51 |
DeepFM |
||
52 |
DNN |
||
53 |
FFM |
||
54 |
FM |
||
55 |
MF |
||
56 |
NFM |
||
57 |
PNN |
||
58 |
WDL |
||
59 |
BiLSTM-CRF |
https://github.com/kangyishuai/BiLSTM-CRF-NER/tree/84bde29105b13cd8128bb0ae5d043c4712a756cb |
|
60 |
FCN |
./parser_voc.py中使用的scipy.misc.imread方法为scipy 1.2.0以前的旧版本API,mindspore最低兼容scipy 1.5.2,因此请使用scipy的官方弃用警告中推荐的imageio.imread。 |
|
61 |
GoogleNet |
https://github.com/marload/ConvNets-TensorFlow2/tree/29411e941c4aa72309bdb53c67a6a2fb8db57589 |
|
62 |
SqueezeNet |
||
63 |
Vgg11 |
||
64 |
Vgg13 |
||
65 |
Vgg16 |
||
66 |
Vgg19 |
||
67 |
Unet |
数据集请使用Membrane,可从该训练工程的README.md中获取。 |
|
68 |
U-Net_Med |
|
|
69 |
VAE |
https://github.com/dragen1860/TensorFlow-2.x-Tutorials/tree/9861a308283d17693d497fdfaab20b92c0b26d08 |
为减少不必要的迁移时间,建议选择仅迁移12-VAE文件夹。 迁移后需要进行如下修改:
|
70 |
Vit |
https://github.com/tuvovan/Vision_Transformer_Keras/tree/6a1b0959a2f5923b1741335aca5bc2f8dcc7c1f9 |
|
71 |
Yolov5-l-mish |
https://github.com/LongxingTan/tfyolo/tree/df4fa04aa9ee10cb8147f04f63f1484a1fa926fa |
|
72 |
Yolov5-m-mish |
||
73 |
Yolov5-s-mish |
||
74 |
Yolov5-x-mish |
序号 |
模型 |
原始训练工程代码链接参考 |
备注 |
---|---|---|---|
1 |
ALBERT-base-v2 |
https://github.com/google-research/ALBERT/tree/a36e095d3066934a30c7e2a816b2eeb3480e9b87 |
迁移前,需要进行以下修改:
|
2 |
ALBERT-large-v2 |
||
3 |
ALBERT-xlarge-v2 |
||
4 |
ALBERT-xxlarge-v2 |
||
5 |
AFM |
https://github.com/cheungdaven/DeepRec/tree/68a34cb495911e797d85cbd962526188f4aede12 |
迁移后需要进行以下修改:
|
6 |
AttRec |
||
7 |
Caser |
||
8 |
DEEP-FM |
||
9 |
FM |
||
10 |
I-AutoRec |
||
11 |
NFM |
||
12 |
NNMF |
||
13 |
NRR |
||
14 |
PRME |
||
15 |
U-AutoRec |
||
16 |
Attention-Based Bidirectional RNN |
由于dropout算子在mindspore中已经对training参数做了处理,所以需要将模型定义文件中self.keep_prob属性直接修改为0.5,无需通过where判断。 |
|
17 |
Character-level CNN |
||
18 |
RCNN |
||
19 |
Very Deep CNN |
||
20 |
Word-level Bidirectional RNN |
||
21 |
Word-level CNN |
||
22 |
BERT-Tiny |
https://github.com/google-research/bert/tree/eedf5716ce1268e56f0a50264a88cafad334ac61 |
迁移前,请进行如下修改:
|
23 |
BERT-Mini |
||
24 |
BERT-Small |
||
25 |
BERT-Medium |
||
26 |
BERT-Base |
||
27 |
Inception v1 |
https://github.com/tensorflow/models/tree/164bab98cc218f5c8cbd6ec1156cd6f364032a1b |
迁移后在./models/research/slim_x2ms/train_image_classifier.py文件中做如下修改。
|
28 |
Inception v2 |
||
29 |
Inception v4 |
||
30 |
Inception-ResNet-v2 |
||
31 |
RBT6 |
https://github.com/bojone/bert4keras/tree/9c1c916def4d515a046c414 |
迁移前,需进行以下修改:
|
32 |
RBT4 |
||
33 |
RBTL3 |
||
34 |
RBT3 |
||
35 |
RoBERTa-wwm-ext-large |
||
36 |
RoBERTa-wwm-ext |
||
37 |
Bi-LSTM-CRF |
https://github.com/fzschornack/bi-lstm-crf-tensorflow/tree/5181106 |
|
38 |
CNN-LSTM-CTC |
|
|
39 |
DCN |
https://github.com/princewen/tensorflow_practice/tree/master/recommendation |
迁移前需要对DCN模型做如下修改。
|
40 |
MLR5 |
|
|
41 |
MLR10 |
||
42 |
MLR15 |
||
43 |
MLR20 |
||
44 |
PNN |
迁移前需要对PNN模型做如下修改。
|
|
45 |
LeNet |
https://github.com/Jackpopc/aiLearnNotes/tree/7069a705bbcbea1ac24 |
|
46 |
AlexNet |
||
47 |
ResNet-18 |
https://github.com/taki0112/ResNet-Tensorflow/tree/f395de3a53d |
迁移前需要安装jedi依赖。 迁移后需要做以下适配。
|
48 |
ResNet-34 |
||
49 |
ResNet-50 |
||
50 |
ResNet-101 |
||
51 |
ResNet-152 |