Power

功能说明

实现按元素做幂运算功能,提供3类接口,处理逻辑分别为:

函数原型

由于该接口的内部实现中涉及复杂的数学计算,需要额外的临时空间来存储计算过程中的中间变量。临时空间支持接口框架申请和开发者通过sharedTmpBuffer入参传入两种方式。

接口框架申请的方式,开发者需要预留临时空间;通过sharedTmpBuffer传入的情况,开发者需要为sharedTmpBuffer申请空间。临时空间大小BufferSize的获取方式如下:通过GetPowerMaxMinTmpSize中提供的GetPowerMaxMinTmpSize接口获取需要预留空间的范围大小。

参数说明

表1 模板参数说明

参数名

描述

T

操作数的数据类型。

isReuseSource

是否允许修改源操作数。该参数预留,传入默认值false即可。

表2 接口参数说明

参数名

输入/输出

描述

dstTensor

输出

目的操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float/int32_t

srcTensor1

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

源操作数的数据类型需要与目的操作数保持一致。

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float/int32_t

srcTensor2

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

源操作数的数据类型需要与目的操作数保持一致。

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float/int32_t

scalarValue

输入

源操作数,类型为Scalar。源操作数的数据类型需要与目的操作数保持一致。

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float/int32_t

sharedTmpBuffer

输入

临时内存空间。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:uint8_t

针对3个power接口,不同输入数据类型情况下,临时空间大小BufferSize的获取方式请参考GetPowerMaxMinTmpSize

返回值

支持的型号

Atlas A2训练系列产品/Atlas 800I A2推理产品

约束说明

调用示例

本样例中只展示Compute流程中的部分代码。如果您需要运行样例代码,请将该代码段拷贝并替换样例模板中Compute函数的部分代码即可。

样例模板

#include "kernel_operator.h"
namespace AscendC {
template <typename srcType>
class KernelPower {
public:
    __aicore__ inline KernelPower()
    {}
    __aicore__ inline void Init(GM_ADDR src1_gm, GM_ADDR src2_gm, GM_ADDR dst_gm, uint32_t srcSize)
    {
        src1_global.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(src1_gm), srcSize);
        src2_global.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(src2_gm), srcSize);
        dst_global.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(dst_gm), srcSize);
        pipe.InitBuffer(inQueueX1, 1, srcSize * sizeof(srcType));
        pipe.InitBuffer(inQueueX2, 1, srcSize * sizeof(srcType));
        pipe.InitBuffer(outQueue, 1, srcSize * sizeof(srcType));
        bufferSize = srcSize;
    }
    __aicore__ inline void Process()
    {
        CopyIn();
        Compute();
        CopyOut();
    }
private:
    __aicore__ inline void CopyIn()
    {
        LocalTensor<srcType> srcLocal1 = inQueueX1.AllocTensor<srcType>();
        DataCopy(srcLocal1, src1_global, bufferSize);
        inQueueX1.EnQue(srcLocal1);
        LocalTensor<srcType> srcLocal2 = inQueueX2.AllocTensor<srcType>();
        DataCopy(srcLocal2, src2_global, bufferSize);
        inQueueX2.EnQue(srcLocal2);
    }
    __aicore__ inline void Compute()
    {
        LocalTensor<srcType> dstLocal = outQueue.AllocTensor<srcType>();
        LocalTensor<srcType> srcLocal1 = inQueueX1.DeQue<srcType>();
        LocalTensor<srcType> srcLocal2 = inQueueX2.DeQue<srcType>();
        LocalTensor<srcType> tmpLocal;
        srcType scalarValue1 = srcLocal1.GetValue(0);
        // srcType scalarValue2 = srcLocal2.GetValue(0);
        Power<srcType, false, true>(dstLocal, scalarValue1, srcLocal2);
        // Power<srcType, false, true>(dstLocal, srcLocal1, scalarValue2); 
        // Power<srcType, false, true>(dstLocal, srcLocal1, srcLocal2); 
        outQueue.EnQue<srcType>(dstLocal);
        inQueueX1.FreeTensor(srcLocal1);
        inQueueX2.FreeTensor(srcLocal2);
    }
    __aicore__ inline void CopyOut()
    {
        LocalTensor<srcType> dstLocal = outQueue.DeQue<srcType>();
        DataCopy(dst_global, dstLocal, bufferSize);
        outQueue.FreeTensor(dstLocal);
    }
private:
    GlobalTensor<srcType> src1_global;
    GlobalTensor<srcType> src2_global;
    GlobalTensor<srcType> dst_global;
    TPipe pipe;
    TQue<QuePosition::VECIN, 1> inQueueX1;
    TQue<QuePosition::VECIN, 1> inQueueX2;
    TQue<QuePosition::VECOUT, 1> outQueue;
    uint32_t bufferSize = 0;
};
template <typename dataType>
__aicore__ void kernel_power_operator(GM_ADDR src1_gm, GM_ADDR src2_gm, GM_ADDR dst_gm, uint32_t srcSize)
{
    KernelPower<dataType> op;
    op.Init(src1_gm, src2_gm, dst_gm, srcSize);
    op.Process();
}
} // namespace AscendC
                                                                    
extern "C" __global__ __aicore__ void kernel_power_operator(GM_ADDR src1_gm, GM_ADDR src2_gm, GM_ADDR dst_gm, uint32_t srcSize) 
{                                                                                                                 
    AscendC::kernel_power_operator<half>(src1_gm, src2_gm, dst_gm, srcSize); //传入类型和大小                                                        
}