PairReduce

函数功能

PairReduceSum:相邻两个(奇偶)元素求和,例如(a1, a2, a3, a4, a5, a6...),相邻两个数据求和为(a1+a2, a3+a4, a5+a6, ......)。

函数原型

参数说明

表1 模板参数说明

参数名

描述

T

操作数数据类型。

isSetMask

是否在接口内部设置mask。

  • true,表示在接口内部设置mask。
  • false,表示在接口外部设置mask,开发者需要使用SetVectorMask接口设置mask值。这种模式下,本接口入参中的mask值必须设置为MASK_PLACEHOLDER。
表2 参数说明

参数名称

输入/输出

含义

dstLocal

输出

目的操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas 训练系列产品,支持的数据类型为:half

Atlas推理系列产品AI Core,支持的数据类型为:half/float

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas 200I/500 A2推理产品,支持的数据类型为:half/float

srcLocal

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas 训练系列产品,支持的数据类型为:half

Atlas推理系列产品AI Core,支持的数据类型为:half/float

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas 200I/500 A2推理产品,支持的数据类型为:half/float

repeat

输入

重复迭代次数。取值范围为[0, 255]。

矢量计算单元,每次读取连续的256 Bytes数据进行计算,为完成对输入数据的处理,必须通过多次迭代(repeat)才能完成所有数据的读取与计算。repeatTimes表示迭代的次数。

关于该参数的具体描述请参考基础API通用说明

mask[2]/ maskCount

输入

mask用于控制每次迭代内参与计算的元素。

  • 连续模式:表示前面连续的多少个元素参与计算。数据类型为uint64。取值范围和操作数的数据类型有关,数据类型不同,每次迭代内能够处理的元素个数最大值不同。当操作数为16位时,mask∈[1, 128];当操作数为32位时,mask∈[1, 64]。
  • 逐bit模式:可以按位控制哪些元素参与计算,bit位的值为1表示参与计算,0表示不参与。参数类型为长度为2的uint64_t类型数组。

    例如,mask=[8, 0],8=0b1000,表示仅第4个元素参与计算。

    参数取值范围和操作数的数据类型有关,数据类型不同,每次迭代内能够处理的元素个数最大值不同。当操作数为16位时,mask[0]、mask[1]∈[0, 264-1];当操作数为32位时,mask[1]为0,mask[0]∈[0, 264-1]。

dstRepStride

输入

表示相邻迭代间,矢量目的操作数相同block地址步长。RepStride单位为128Byte。

注意,此参数值Atlas 训练系列产品不支持配置0。

srcBlkStride

输入

表示单次迭代内,矢量源操作数不同block间地址步长。

srcRepStride

输入

表示相邻迭代间,矢量源操作数相同block地址步长。

返回值

支持的型号

Atlas 训练系列产品

Atlas推理系列产品AI Core

Atlas A2训练系列产品/Atlas 800I A2推理产品

Atlas 200I/500 A2推理产品

注意事项

调用示例

本样例中展示Compute流程中的部分代码。如果您需要运行样例代码,请将该代码段拷贝并替换下方主体代码的Compute函数指令执行部分即可。

#include "kernel_operator.h"

namespace AscendC {
class KernelReduce {
public:
    __aicore__ inline KernelReduce() {}
    __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
    {
        srcGlobal.SetGlobalBuffer((__gm__ half*)src);
        dstGlobal.SetGlobalBuffer((__gm__ half*)dstGm);

        pipe.InitBuffer(inQueueSrc, 1, srcDataSize * sizeof(half));
        pipe.InitBuffer(outQueueDst, 1, dstDataSize * sizeof(half));
    }
    __aicore__ inline void Process()
    {
        CopyIn();
        Compute();
        CopyOut();
    }

private:
    __aicore__ inline void CopyIn()
    {
        LocalTensor<half> srcLocal = inQueueSrc.AllocTensor<half>();
        DataCopy(srcLocal, srcGlobal, srcDataSize);
        inQueueSrc.EnQue(srcLocal);
    }
    __aicore__ inline void Compute()
    {
        LocalTensor<half> srcLocal = inQueueSrc.DeQue<half>();
        LocalTensor<half> dstLocal = outQueueDst.AllocTensor<half>();

        half zero(0);
        Duplicate(dstLocal, zero, dstDataSize);

        //指令执行部分(替换成上述代码)

        outQueueDst.EnQue<half>(dstLocal);
        inQueueSrc.FreeTensor(srcLocal);
    }
    __aicore__ inline void CopyOut()
    {
        LocalTensor<half> dstLocal = outQueueDst.DeQue<half>();
        DataCopy(dstGlobal, dstLocal, dstDataSize);
        outQueueDst.FreeTensor(dstLocal);
    }

private:
    TPipe pipe;
    TQue<QuePosition::VECIN, 1> inQueueSrc;
    TQue<QuePosition::VECOUT, 1> outQueueDst;
    GlobalTensor<half> srcGlobal, dstGlobal;
    int srcDataSize = 128;
    int dstDataSize = 64;
};
} // namespace AscendC

extern "C" __global__ __aicore__ void reduce_simple_kernel(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
{
    AscendC::KernelReduce op;
    op.Init(src, dstGm);
    op.Process();
}