在所有的输入数据中找出最小值及最小值对应的索引位置。
template <typename T> __aicore__ inline void ReduceMin(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const LocalTensor<T>& workLocal, const int32_t count, bool calIndex = 0)
template <typename T> __aicore__ inline void ReduceMin(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const LocalTensor<T>& workLocal, const uint64_t mask[2], const int32_t repeatTimes, const int32_t srcRepStride, bool calIndex = 0)
template <typename T> __aicore__ inline void ReduceMin(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const LocalTensor<T>& workLocal, const int32_t mask, const int32_t repeatTimes, const int32_t srcRepStride, bool calIndex = 0)
参数名称 |
输入/输出 |
含义 |
---|---|---|
dstLocal |
输出 |
目的操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 Atlas 训练系列产品,支持的数据类型为:half Atlas推理系列产品AI Core,支持的数据类型为:half/float Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas 200I/500 A2推理产品,支持的数据类型为:half/float |
srcLocal |
输入 |
源操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 源操作数的数据类型需要与目的操作数保持一致。 Atlas 训练系列产品,支持的数据类型为:half Atlas推理系列产品AI Core,支持的数据类型为:half/float Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas 200I/500 A2推理产品,支持的数据类型为:half/float |
workLocal |
输入 |
指令执行期间用于存储中间结果,用于内部计算所需操作空间,需特别注意空间大小,参见指令约束说明。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 源操作数的数据类型需要与目的操作数保持一致。 Atlas 训练系列产品,支持的数据类型为:half Atlas推理系列产品AI Core,支持的数据类型为:half/float Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas 200I/500 A2推理产品,支持的数据类型为:half/float |
count |
输入 |
输入数据元素个数。 参数取值范围和操作数的数据类型有关,数据类型不同,能够处理的元素个数最大值不同,但是最大处理的数据量不会超过UB大小限制。 |
calIndex |
输入 |
指定是否获取最小值的索引,仅支持bool类型,默认值为false,取值:
|
mask |
输入 |
mask用于控制每次迭代内参与计算的元素。
|
repeatTimes |
输入 |
重复迭代次数。 矢量计算单元,每次读取连续的256 Bytes数据进行计算,为完成对输入数据的处理,必须通过多次迭代(repeat)才能完成所有数据的读取与计算。repeatTimes表示迭代的次数。 关于该参数的具体描述请参考基础API通用说明。 |
srcRepStride |
输入 |
相邻迭代间,源操作数相同block地址步长,即源操作数每次迭代跳过的block数目。详细说明请参考Repeat stride(相邻迭代间相同datablock的地址步长)。 |
无
Atlas 训练系列产品
Atlas推理系列产品AI Core
Atlas A2训练系列产品/Atlas 800I A2推理产品
Atlas 200I/500 A2推理产品
// dstLocal,srcLocal和workLocal均为half类型,srcLocal的计算数据量为8320,并且连续排布,需要索引值,使用tensor高维切分计算接口,设定repeatTimes为65,mask为全部元素参与计算 uint64_t mask = 128; ReduceMin<half>(dstLocal, srcLocal, workLocal, mask, 65, 8, true);
// dstLocal,srcLocal和workLocal均为half类型,srcLocal的计算数据量为8320,并且连续排布,需要索引值,使用tensor高维切分计算接口,设定repeatTimes为65,mask为全部元素参与计算 uint64_t mask[2] = { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }; ReduceMin<half>(dstLocal, srcLocal, workLocal, mask, 65, 8, true);
// dstLocal,srcLocal和workLocal均为half类型,srcLocal的计算数据量为8320,并且连续排布,需要索引值,使用tensor前n个数据计算接口 ReduceMin<half>(dstLocal, srcLocal, workLocal, 8320, true);
tensor高维切分计算接口完整调用示例: #include "kernel_operator.h" namespace AscendC { class KernelReduce { public: __aicore__ inline KernelReduce() {} __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm) { srcGlobal.SetGlobalBuffer((__gm__ half*)src); dstGlobal.SetGlobalBuffer((__gm__ half*)dstGm); repeat = srcDataSize / mask; pipe.InitBuffer(inQueueSrc, 1, srcDataSize * sizeof(half)); pipe.InitBuffer(workQueue, 1, 32 * sizeof(half)); // 此处按照公式计算所需的最小work空间为32,也就是64Bytes pipe.InitBuffer(outQueueDst, 1, dstDataSize * sizeof(half)); } __aicore__ inline void Process() { CopyIn(); Compute(); CopyOut(); } private: __aicore__ inline void CopyIn() { LocalTensor<half> srcLocal = inQueueSrc.AllocTensor<half>(); DataCopy(srcLocal, srcGlobal, srcDataSize); inQueueSrc.EnQue(srcLocal); } __aicore__ inline void Compute() { LocalTensor<half> srcLocal = inQueueSrc.DeQue<half>(); LocalTensor<half> dstLocal = outQueueDst.AllocTensor<half>(); LocalTensor<half> workLocal = workQueue.AllocTensor<half>(); // level0 ReduceMin<half>(dstLocal, srcLocal, workLocal, mask, repeat, repStride, true); outQueueDst.EnQue<half>(dstLocal); inQueueSrc.FreeTensor(srcLocal); workQueue.FreeTensor(workLocal); } __aicore__ inline void CopyOut() { LocalTensor<half> dstLocal = outQueueDst.DeQue<half>(); DataCopy(dstGlobal, dstLocal, srcDataSize); outQueueDst.FreeTensor(dstLocal); } private: TPipe pipe; TQue<QuePosition::VECIN, 1> inQueueSrc; TQue<QuePosition::VECOUT, 1> workQueue; TQue<QuePosition::VECOUT, 1> outQueueDst; GlobalTensor<half> srcGlobal, dstGlobal; int srcDataSize = 512; int dstDataSize = 512; int mask = 128; int repStride = 8; int repeat = 0; }; } // namespace AscendC extern "C" __global__ __aicore__ void kernel_ReduceMin_lv0_half_512(__gm__ uint8_t* src, __gm__ uint8_t* dstGm) { AscendC::KernelReduce op; op.Init(src, dstGm); op.Process(); } 示例结果 输入数据(src_gm): [0.769 0.8584 0.1082 0.2715 0.1759 0.7646 0.6406 0.2944 0.4255 0.927 0.8022 0.04507 0.9688 0.919 0.3008 0.7144 0.3206 0.6753 0.8276 0.3374 0.4636 0.3591 0.112 0.93 0.822 0.7314 0.01165 0.31 0.5586 0.2808 0.3997 0.04544 0.0931 0.8438 0.612 0.03052 0.3652 0.1153 0.06213 0.12103 0.4421 0.8003 0.1583 0.845 0.125 0.6934 0.4592 0.871 0.573 0.4133 0.885 0.6875 0.2854 0.7007 0.1294 0.2092 0.3794 0.7534 0.5923 0.03888 0.2412 0.8584 0.6704 0.429 0.77 0.427 0.6323 0.524 0.0519 0.514 0.2408 0.09357 0.1702 0.3694 0.665 0.2651 0.9507 0.661 0.459 0.1317 0.7334 0.289 0.0325 0.1187 0.6626 0.2769 0.3083 0.923 0.826 0.7275 0.976 0.4854 0.724 0.7783 0.8022 0.677 0.2401 0.377 0.839 0.2297 0.54 0.743 0.511 0.1346 0.7183 0.4775 0.3442 0.561 0.2935 0.04065 0.1001 0.753 0.6816 0.8955 0.07324 0.5947 0.508 0.2229 0.468 0.3135 0.0898 0.5625 0.7407 0.803 0.1071 0.6724 0.797 0.8296 0.807 0.8604 0.7437 0.967 0.4307 0.3833 0.03394 0.02478 0.9385 0.3105 0.43 0.0706 0.4363 0.05832 0.0812 0.2418 0.03967 0.557 0.2705 0.963 0.8125 0.342 0.8853 0.3047 0.7197 0.7173 0.02887 0.7695 0.4304 0.691 0.4285 0.9917 0.3994 0.19 0.3984 0.1888 0.83 0.0644 0.9766 0.857 0.09784 0.831 0.224 0.8228 0.8975 0.1775 0.725 0.882 0.7188 0.3257 0.05347 0.1026 0.05902 0.9697 0.445 0.728 0.626 0.3577 0.711 0.2343 0.3865 0.03888 0.3318 0.855 0.891 0.3647 0.9297 0.5083 0.7163 0.5737 0.2155 0.804 0.2118 0.525 0.1116 0.558 0.05203 0.6343 0.5796 0.5605 0.449 0.4475 0.3713 0.3708 0.11017 0.2048 0.087 0.265 0.937 0.933 0.4683 0.5884 0.4312 0.9326 0.839 0.592 0.566 0.4229 0.05493 0.4578 0.353 0.2915 0.8345 0.888 0.8394 0.8774 0.3582 0.2913 0.798 0.87 0.3372 0.6914 0.9185 0.4368 0.3276 0.8125 0.782 0.885 0.6543 0.1626 0.0965 0.8247 0.03952 0.459 0.5596 0.694 0.59 0.02153 0.3762 0.2428 0.9727 0.3672 0.732 0.2676 0.2102 0.128 0.5957 0.988 0.583 0.9097 0.144 0.3845 0.2151 0.327 0.2925 0.974 0.771 0.9224 0.147 0.6206 0.1774 0.1415 0.7637 0.573 0.9736 0.183 0.837 0.0753 0.098 0.8184 0.08527 0.889 0.528 0.2207 0.1852 0.5903 0.594 0.04865 0.5806 0.6006 0.2048 0.4934 0.1302 0.7217 0.949 0.04105 0.6875 0.3975 0.845 0.6045 0.4077 0.01927 0.1505 0.4407 0.8457 0.9614 0.4504 0.7134 0.07837 0.3557 0.521 0.545 0.02188 0.581 0.3215 0.4458 0.853 0.4656 0.928 0.2927 0.3467 0.3516 0.1686 0.88 0.1509 0.2993 0.4006 0.611 0.1251 0.0887 0.896 0.2651 0.5596 0.0359 0.6895 0.3494 0.871 0.673 0.1486 0.7812 0.0925 0.434 0.09985 0.02402 0.2932 0.01034 0.744 0.6357 0.658 0.1487 0.3416 0.1171 0.3088 0.557 0.837 0.10944 0.7036 0.9097 0.3706 0.73 0.2844 0.78 0.5117 0.5537 0.776 0.6553 0.128 0.3184 0.8022 0.686 0.1785 0.2212 0.74 0.8955 0.4773 0.6084 0.7827 0.239 0.4849 0.1816 0.2854 0.166 0.012505 0.4421 0.2179 0.06094 0.2124 0.409 0.641 0.1841 0.776 0.4685 0.2334 0.4094 0.3447 0.6836 0.434 0.10516 0.514 0.8345 0.371 0.8555 0.5396 0.844 0.7554 0.171 0.749 0.7344 0.05936 0.4482 0.9873 0.3137 0.7627 0.871 0.5503 0.956 0.2607 0.0904 0.535 0.3079 0.762 0.793 0.545 0.889 0.8936 0.6094 0.6533 0.5737 0.945 0.4434 0.2686 0.05872 0.0776 0.0915 0.5386 0.6777 0.3164 0.8955 0.3398 0.3801 0.3784 0.3904 0.4849 0.816 0.962 0.335 0.705 0.1871 0.3643 0.7163 0.6484 0.4526 0.8096 0.2408 0.608 0.0215 0.7246 0.412 0.609 0.03342 0.653 0.0424 0.672 0.627 0.3025 0.9424 0.3784 0.1012 0.4192 0.7695 0.7383 0.9395 0.06494 0.3027 0.11523 0.6035 0.1727 0.4048 0.932 0.4053 0.3528 0.8193 0.0355 0.01953 0.574 0.509 0.1443 0.0848 0.568 0.8716 0.968 0.613 0.535 0.0389 0.84 0.0655 0.127 0.06104 0.526 0.504 0.4175 0.8027 0.482 0.304 ] 输出数据(dst_gm): [0.01034, 2.104e-05], 2.104e-05需要使用reinterpret_cast方法转换得到索引值353 tensor前n个数据计算接口完整调用示例: #include "kernel_operator.h" namespace AscendC { class KernelReduce { public: __aicore__ inline KernelReduce() {} __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm) { srcGlobal.SetGlobalBuffer((__gm__ half*)src); dstGlobal.SetGlobalBuffer((__gm__ half*)dstGm); repeat = srcDataSize / mask; pipe.InitBuffer(inQueueSrc, 1, srcDataSize * sizeof(half)); pipe.InitBuffer(workQueue, 1, 32 * sizeof(half)); // 此处按照公式计算所需的最小work空间为32,也就是64Bytes pipe.InitBuffer(outQueueDst, 1, dstDataSize * sizeof(half)); } __aicore__ inline void Process() { CopyIn(); Compute(); CopyOut(); } private: __aicore__ inline void CopyIn() { LocalTensor<half> srcLocal = inQueueSrc.AllocTensor<half>(); DataCopy(srcLocal, srcGlobal, srcDataSize); inQueueSrc.EnQue(srcLocal); } __aicore__ inline void Compute() { LocalTensor<half> srcLocal = inQueueSrc.DeQue<half>(); LocalTensor<half> dstLocal = outQueueDst.AllocTensor<half>(); LocalTensor<half> workLocal = workQueue.AllocTensor<half>(); // level2 ReduceMin<half>(dstLocal, srcLocal, workLocal, srcDataSize, true); outQueueDst.EnQue<half>(dstLocal); inQueueSrc.FreeTensor(srcLocal); workQueue.FreeTensor(workLocal); } __aicore__ inline void CopyOut() { LocalTensor<half> dstLocal = outQueueDst.DeQue<half>(); DataCopy(dstGlobal, dstLocal, dstDataSize); outQueueDst.FreeTensor(dstLocal); } private: TPipe pipe; TQue<QuePosition::VECIN, 1> inQueueSrc; TQue<QuePosition::VECOUT, 1> workQueue; TQue<QuePosition::VECOUT, 1> outQueueDst; GlobalTensor<half> srcGlobal, dstGlobal; int srcDataSize = 288; int dstDataSize = 16; int mask = 128; int repStride = 8; int repeat = 0; }; } // namespace AscendC extern "C" __global__ __aicore__ void kernel_ReduceMin_lv2_half_288(__gm__ uint8_t* src, __gm__ uint8_t* dstGm) { AscendC::KernelReduce op; op.Init(src, dstGm); op.Process(); } 示例结果 输入数据(src_gm): [0.556 0.5225 0.3623 0.214 0.556 0.0643 0.769 0.594 0.261 0.3652 0.911 0.924 0.386 0.3696 0.2296 0.5957 0.1709 0.79 0.8516 0.341 0.705 0.728 0.8135 0.7534 0.5874 0.771 0.05835 0.7456 0.1049 0.3105 0.1729 0.9253 0.8003 0.918 0.5005 0.7744 0.688 0.6807 0.1456 0.4136 0.1055 0.12054 0.275 0.3848 0.08405 0.3843 0.3218 0.6904 0.878 0.3706 0.3586 0.3518 0.429 0.7275 0.6123 0.8096 0.563 0.54 0.8857 0.8594 0.4143 0.525 0.2744 0.1376 0.382 0.6406 0.1534 0.134 0.2993 0.365 0.8843 0.2986 0.00393 0.6577 0.313 0.8164 0.8706 0.7686 0.873 0.3286 0.03787 0.8145 0.4656 0.66 0.1362 0.1075 0.1376 0.9097 0.9214 0.833 0.3657 0.8438 0.006973 0.2408 0.801 0.1862 0.864 0.8745 0.1805 0.4324 0.8647 0.844 0.8936 0.8496 0.311 0.0334 0.3967 0.579 0.43 0.2332 0.5366 0.3557 0.3542 0.945 0.9336 0.252 0.4375 0.9727 0.859 0.6294 0.6787 0.8887 0.1884 0.524 0.787 0.04755 0.3984 0.0508 0.4065 0.716 0.3184 0.21 0.10645 0.7544 0.2827 0.7856 0.4878 0.5903 0.12146 0.6426 0.8438 0.063 0.7617 0.6396 0.1995 0.6475 0.1464 0.7617 0.514 0.3506 0.2708 0.8643 0.1204 0.04337 0.21 0.528 0.0644 0.2133 0.0643 0.0125 0.602 0.654 0.866 0.225 0.9473 0.408 0.4597 0.2793 0.11145 0.293 0.04156 0.7705 0.3555 0.3977 0.7485 0.76 0.9824 0.2832 0.1239 0.4915 0.878 0.5986 0.7217 0.832 0.6206 0.6455 0.0639 0.772 0.01854 0.7437 0.1962 0.485 0.5483 0.414 0.9253 0.2452 0.2942 0.9478 0.879 0.586 0.659 0.635 0.7197 0.933 0.08905 0.02892 0.74 0.499 0.02054 0.2241 0.5137 0.8325 0.185 0.6196 0.949 0.935 0.5605 0.04108 0.3672 0.5566 0.3958 0.4565 0.8135 0.3015 0.46 0.1196 0.5044 0.54 0.05203 0.687 0.8525 0.501 0.3464 0.307 0.804 0.0926 0.202 0.999 0.955 0.581 0.06216 0.271 0.9365 0.854 0.4202 0.269 0.985 0.04547 1. 0.1208 0.5225 0.00935 0.4128 0.644 0.3826 0.6963 0.2942 0.007626 0.7144 0.609 0.3206 0.694 0.393 0.6265 0.6904 0.2487 0.9478 0.798 0.891 0.8867 0.9414 0.395 0.11285 0.515 0.919 0.013855 0.749 0.5527 0.465 0.451 0.1458 0.59 0.893 0.0146 0.062 0.06604 0.934 0.2242 ] 输出数据(dst_gm): [0.00393, 4.3e-06], 4.3e-06需要使用reinterpret_cast方法转换得到索引值72