Atlas 训练系列产品支持该算子。
Atlas A2训练系列产品支持该算子。
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
假设aclnnConvTbc正向输入input的shape是 (Hin, N, Cin) ,输出梯度gradOutput的shape是 (Hout, N, Cout),卷积核weight的shape是 (K, Cin, Cout),偏置bias的shape为 (Cout)。
输入张量input的梯度输出gradInput(t, b, c)将被表示为:
卷积核weight的梯度输出gradWeight(t, b, c)将被表示为:
偏置bias的梯度输出grad_bias将被表示为:
aclnnStatus aclnnConvTbcBackwardGetWorkspaceSize(const aclTensor *self, const aclTensor *input, const aclTensor *weight, const aclTensor *bias, const int64_t pad, int8_t cubeMathType, aclTensor *gradInput, aclTensor *gradWeight, aclTensor *gradBias, uint64_t *workspaceSize, aclOpExecutor **executor)
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
aclnnStatus aclnnConvTbcBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
返回aclnnStatus状态码,具体参见aclnn返回码。
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_convolution_backward.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor if (shape.size() == 4) { *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW, shape.data(), shape.size(), *deviceAddr); } else { *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); } return 0; } int main() { // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> selfShape = {5, 1, 2}; std::vector<int64_t> inputShape = {5, 1, 2}; std::vector<int64_t> weightShape = {1, 2, 2}; std::vector<int64_t> biasShape = {2}; const int64_t pad = 0; int8_t cubeMathType = 1; std::vector<int64_t> gradInputShape = {5, 1, 2}; std::vector<int64_t> gradWeightShape = {1, 2, 2}; std::vector<int64_t> gradBiasShape = {2}; // 创建gradOut aclTensor std::vector<float> selfData(GetShapeSize(selfShape) * 2, 1); aclTensor* self = nullptr; void *selfDeviceAddr = nullptr; ret = CreateAclTensor(selfData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT16, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建input aclTensor std::vector<float> inputData(GetShapeSize(inputShape) * 2, 1); aclTensor* input = nullptr; void *inputDeviceAddr = nullptr; ret = CreateAclTensor(inputData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT16, &input); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建weight aclTensor std::vector<float> weightData(GetShapeSize(weightShape) * 2, 1); aclTensor* weight = nullptr; void *weightDeviceAddr = nullptr; ret = CreateAclTensor(weightData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16, &weight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建bias aclTensor std::vector<float> biasData(GetShapeSize(biasShape) * 2, 1); aclTensor* bias = nullptr; void *biasDeviceAddr = nullptr; ret = CreateAclTensor(biasData, biasShape, &biasDeviceAddr, aclDataType::ACL_FLOAT16, &bias); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradInput aclTensor std::vector<float> gradInputData(GetShapeSize(gradInputShape) * 2, 1); aclTensor* gradInput = nullptr; void *gradInputDeviceAddr = nullptr; ret = CreateAclTensor(gradInputData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT16, &gradInput); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradWeight aclTensor std::vector<float> gradWeightData(GetShapeSize(gradWeightShape) * 2, 1); aclTensor* gradWeight = nullptr; void *gradWeightDeviceAddr = nullptr; ret = CreateAclTensor(gradWeightData, gradWeightShape, &gradWeightDeviceAddr, aclDataType::ACL_FLOAT16, &gradWeight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradBias aclTensor std::vector<float> gradBiasData(GetShapeSize(gradBiasShape) * 2, 1); aclTensor* gradBias = nullptr; void *gradBiasDeviceAddr = nullptr; ret = CreateAclTensor(gradBiasData, gradBiasShape, &gradBiasDeviceAddr, aclDataType::ACL_FLOAT16, &gradBias); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnConvTbcBackwardGetWorkspaceSize第一段接口 ret = aclnnConvTbcBackwardGetWorkspaceSize(self, input, weight, bias, pad, cubeMathType, gradInput, gradWeight, gradBias, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvTbcBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnConvTbcBackward第二段接口 ret = aclnnConvTbcBackward(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvTbcBackward failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(gradInputShape); std::vector<float> gradInputResult(size, 0); ret = aclrtMemcpy(gradInputResult.data(), gradInputResult.size() * sizeof(gradInputResult[0]), gradInputDeviceAddr, size * sizeof(gradInputResult[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("gradInputResult[%ld] is: %f\n", i, gradInputResult[i]); } size = GetShapeSize(gradWeightShape); std::vector<float> gradWeightResult(size, 0); ret = aclrtMemcpy(gradWeightResult.data(), gradWeightResult.size() * sizeof(gradWeightResult[0]), gradWeightDeviceAddr, size * sizeof(gradWeightResult[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("gradWeightResult[%ld] is: %f\n", i, gradWeightResult[i]); } size = GetShapeSize(gradBiasShape); std::vector<float> gradBiasResult(size, 0); ret = aclrtMemcpy(gradBiasResult.data(), gradBiasResult.size() * sizeof(gradBiasResult[0]), gradInputDeviceAddr, size * sizeof(gradBiasResult[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("gradBiasResult[%ld] is: %f\n", i, gradBiasResult[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyTensor(input); aclDestroyTensor(weight); aclDestroyTensor(bias); aclDestroyTensor(gradInput); aclDestroyTensor(gradWeight); aclDestroyTensor(gradBias); // 7. 释放device资源,需要根据具体API的接口定义参数 aclrtFree(selfDeviceAddr); aclrtFree(inputDeviceAddr); aclrtFree(weightDeviceAddr); aclrtFree(biasDeviceAddr); aclrtFree(gradInputDeviceAddr); aclrtFree(gradWeightDeviceAddr); aclrtFree(gradBiasDeviceAddr); if (workspaceSize > 0) { aclrtFree(workspaceAddr); } aclrtDestroyStream(stream); aclrtDestroyContext(context); aclrtResetDevice(deviceId); aclFinalize(); return 0; }