create_iteration_per_loop_var

函数原型

def create_iteration_per_loop_var(self, train_op)

功能说明

该接口和load_iteration_per_loop_var接口配合使用,用来实现sess.run模式下设置小循环次数,即每次sess.run()在Device侧执行训练迭代的次数。该接口的主要作用是修改图,并通过load_iteration_per_loop_var接口来设置小循环次数。

参数说明

参数名

输入/输出

描述

train_op

输入

更新变量或梯度的操作。

返回值

返回一个算子,供用户通过sess.run(op)调用。

调用示例

# 训练模型
with tf.Session(config=config) as sess:
    sess.run(init)
    # sess.run模式下设置小循环次数为10
    iteration = util.IterationPerLoop() 
    train_op = iteration.create_iteration_per_loop_var(optimizer) #修改图
    tf.train.Supervisor(logdir="/home/xxxx",init_op=init)  #冻结图
    iteration.load_iteration_per_loop_var(sess, 10)  #设置小循环次数

    for epoch in range(training_epochs):
        avg_cost = 0
        total_batch = int(mnist.train.num_examples / batch_size)
 
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            _, c = sess.run([train_op, cost], feed_dict={x: batch_xs, y: batch_ys})
 
            avg_cost += c / total_batch