昇腾NPU是AI算力的后起之秀,但目前训练和在线推理脚本大多是基于GPU的。由于NPU与GPU的架构差异,基于GPU的训练和在线推理脚本不能直接在NPU上使用,脚本转换工具提供了将基于GPU的脚本转换为基于NPU的脚本的自动化方法,节省了人工手动进行脚本迁移的学习成本与工作量,大幅提升了迁移效率。
序号 |
模型名称 |
序号 |
模型名称 |
---|---|---|---|
1 |
2S-AGCN |
161 |
MobileNetV1 |
2 |
3D AttentionNet |
162 |
MobileNetV2 |
3 |
3D Nested_UNet |
163 |
MobileNetV3 |
4 |
3D Resnet |
164 |
MobileNetV3-Small |
5 |
3DUNet |
165 |
Moco V2 |
6 |
ACGAN-Mod-Big-TAC |
166 |
MSGAN |
7 |
ADACOS |
167 |
MSPN |
8 |
ADLayer |
168 |
MTCNN |
9 |
Advanced East |
169 |
Multi-Gradient_Descent |
10 |
Adversarial Autoencoder |
170 |
MultiPoseNet |
11 |
Adversarial_Long-Tail |
171 |
Mutual-Channel-Loss |
12 |
AFN |
172 |
MutualNet |
13 |
AlexNet |
173 |
NAS-SEGM |
14 |
AMDIM |
174 |
nest_small |
15 |
ANTIALIASED-CNNS |
175 |
NeuMF |
16 |
Attention R2U-Net |
176 |
nf_resnet26 |
17 |
Attention U_Net |
177 |
NFM |
18 |
AUTOAUGMENT |
178 |
nfnet_f1s |
19 |
Autodeeplab |
179 |
NFNet-F |
20 |
AutoInt |
180 |
NF-ResNet |
21 |
axial-deeplab |
181 |
N-Gran |
22 |
BDL |
182 |
Non-Local |
23 |
BEGAN |
183 |
NTS-Net |
24 |
beit_base_patch16_224 |
184 |
ONN |
25 |
BERT-ITPT-FiT |
185 |
OpenPose |
26 |
BICYCLEGAN |
186 |
opl |
27 |
BigGAN-Mod-CR |
187 |
ORDERED-NEURONS |
28 |
BigGAN-Mod-DiffAug |
188 |
PASSRnet |
29 |
BiT-M-R50x1 |
189 |
PFF |
30 |
BiT-S-R101x1 |
190 |
PICANET |
31 |
BiT-S-R50x1 |
191 |
Pixel-BERT(VQA) |
32 |
BiT-S-R50x3 |
192 |
PixelDA |
33 |
botnet26t_256 |
193 |
PixelLink |
34 |
Bottleneck Transformers |
194 |
PNet |
35 |
Boundary-Seeking GAN |
195 |
PointNet++ |
36 |
BYOL |
196 |
POSE-TRANSFER |
37 |
CaaM |
197 |
PPN |
38 |
CausalHTP |
198 |
PPON |
39 |
CGAN |
199 |
PreactResNet50 |
40 |
CIConv |
200 |
PROSR |
41 |
CMC |
201 |
PSENet |
42 |
CoaT |
202 |
PVANet |
43 |
coat_mini |
203 |
Pysot |
44 |
CondenseNetV2 |
204 |
R2U-Net |
45 |
Context Encoder |
205 |
RAFT |
46 |
Context-Conditional GAN |
206 |
RANet |
47 |
ContraGAN |
207 |
RCAN |
48 |
ContraGAN-CR |
208 |
RCNN |
49 |
ContraGAN-DiffAug |
209 |
RecVAE |
50 |
convit_small |
210 |
RefineNet |
51 |
Convit-tiny |
211 |
regnet |
52 |
coral-cnn |
212 |
regnetx_002 |
53 |
COSMIC |
213 |
RegNetX-1.6GF |
54 |
COSMIC |
214 |
regnety_064 |
55 |
Coupled GAN |
215 |
RegNetY-1.6GF |
56 |
CPC |
216 |
ReID |
57 |
csp-resnet50 |
217 |
Relativistic GAN |
58 |
DCNMix |
218 |
repvgg |
59 |
Deep & Cross Network |
219 |
repvgg_a2 |
60 |
Deep Convolutional GAN |
220 |
repvgg_b0 |
61 |
DeepFM |
221 |
Res2Net |
62 |
DEEPHYPERX |
222 |
RES2NET-PRETRAINEDMODELS |
63 |
DeeplabV3+ |
223 |
residual_adapters |
64 |
DeeplabV3+(Xception-JFT) |
224 |
ResMLP |
65 |
DeepMar |
225 |
ResNeSt |
66 |
Deit |
226 |
ResNet101 |
67 |
Densenet121 |
227 |
ResNet152 |
68 |
DenseNet161 |
228 |
ResNet18 |
69 |
DenseNet169 |
229 |
ResNet34 |
70 |
DenseNet201 |
230 |
ResNet50 |
71 |
dgc |
231 |
resnet61q |
72 |
DIFM |
232 |
resnetv2_101 |
73 |
DINO |
233 |
resnetv2_50t |
74 |
DiscoGAN |
234 |
Resnext101 |
75 |
dla34 |
235 |
Resnext101_32x8d |
76 |
DnCNN |
236 |
Resnext50 |
77 |
DoReFa-Net |
237 |
ResNeXt-50-32x4d |
78 |
Double-DIP |
238 |
Retinanet |
79 |
DPC |
239 |
rexnet |
80 |
DPL |
240 |
RNet |
81 |
DRAGAN |
241 |
RRN |
82 |
DualGAN |
242 |
SAN |
83 |
DYNABERT |
243 |
SC-SfMLearner |
84 |
EAST |
244 |
S-DCNET |
85 |
ECA-NFNet-L0 |
245 |
SegNet |
86 |
EDSR |
246 |
sehalonet33ts |
87 |
efficientnet_b8 |
247 |
SelecSLS |
88 |
efficientnet_l2 |
248 |
self-attention-GAN |
89 |
Efficientnet-B0 |
249 |
SELF-ATTENTION-GAN |
90 |
EfficientNet-B1 |
250 |
Semi-Supervised GAN |
91 |
EfficientNet-B2 |
251 |
semnasnet_050 |
92 |
EfficientNet-B4 |
252 |
SENet |
93 |
EfficientNet-b6 |
253 |
seresnet18 |
94 |
EfficientNet-b7 |
254 |
SE-ResNet-50 |
95 |
Enhanced Super-Resolution GAN |
255 |
Se-ResNext-50-32x4d |
96 |
ESRGAN |
256 |
SETR |
97 |
EXTD |
257 |
SGCN |
98 |
FACEBOXES-PYTORCH |
258 |
SGNAS |
99 |
FairDARTS |
259 |
Shufflenetv2 |
100 |
FBNet-C |
260 |
SiamRPN |
101 |
fbnetc_100 |
261 |
SimplePose |
102 |
fbnetv3_b |
262 |
sknet |
103 |
FCN |
263 |
SOF-VSR |
104 |
FD-GAN |
264 |
SpanBERT |
105 |
FIBINET |
265 |
Speech Transformer |
106 |
FixMatch |
266 |
SPSR |
107 |
FOTS |
267 |
SqueezeNet1_0 |
108 |
FREE |
268 |
SqueezeNet1_1 |
109 |
GAN |
269 |
SRCNN |
110 |
GCANET |
270 |
SSD_MobileNetV2 |
111 |
GENet |
271 |
SSD_MobileNetV3 |
112 |
gernet_s |
272 |
SSD-Mobilenet |
113 |
GGAG |
273 |
SSL-FEW-SHOT |
114 |
GGAN |
274 |
STARGAN |
115 |
Glu-Mixer |
275 |
STGCN |
116 |
gluon_senet154 |
276 |
StochasticDepth50 |
117 |
gluon_seresnext101_32x4d |
277 |
SUPCONTRAST |
118 |
gluon_xception |
278 |
Super-Resolution GAN |
119 |
gmlp |
279 |
SUPERVISION-BY-REGISTRATION |
120 |
gmlp_s16_224 |
280 |
SWAV |
121 |
GoogleNet |
281 |
Swin Transformer |
122 |
GPU-efficient networks |
282 |
Tacotron2 |
123 |
GreedyInfoMax |
283 |
tnt_s_patch16_224 |
124 |
GRU |
284 |
TOD |
125 |
halonet_h1 |
285 |
Transformer-iN-Transformer |
126 |
haloregnetz_b |
286 |
TransformerXL |
127 |
hardcorenas |
287 |
TrellisNET |
128 |
hardcorenas_a |
288 |
Twins |
129 |
Hourglass |
289 |
twins_pcpvt_small |
130 |
hyperseg |
290 |
UCNET |
131 |
I3D |
291 |
ULTRA-FAST-LANE-DETECTION |
132 |
ICT |
292 |
U-Net |
133 |
IFM |
293 |
UNET-GAN |
134 |
IIC |
294 |
VAE+GAN |
135 |
Inception V4 |
295 |
VASNET |
136 |
Inception-ResNet-V2 |
296 |
VGG11 |
137 |
InceptionV1 |
297 |
VGG11_BN |
138 |
InceptionV2 |
298 |
VGG13 |
139 |
InfoGAN |
299 |
VGG13_BN |
140 |
InsightFace |
300 |
VGG16 |
141 |
InsightFace-v2 |
301 |
VGG16_BN |
142 |
Lambda Networks |
302 |
VGG19 |
143 |
lambda_resnet26t |
303 |
VGG19_BN |
144 |
Least Squares GAN |
304 |
VIT |
145 |
LFFD |
305 |
VIT-base |
146 |
LGAN |
306 |
vovnet-39 |
147 |
LIGHT-WEIGHT-REFINENET |
307 |
vsumm-reinforce |
148 |
LPRNet |
308 |
Wasserstein GAN |
149 |
LSGAN |
309 |
Wasserstein GAN DIV |
150 |
LSTM |
310 |
Wasserstein GAN GP |
151 |
MATNET |
311 |
WGAN-WC |
152 |
MiningFSS |
312 |
Wide & Deep |
153 |
mixer_s32_224 |
313 |
Wide_ResNet101_2 |
154 |
mixnet_s |
314 |
Wide_ResNet50_2 |
155 |
MLP-Mixer |
315 |
wideresnet |
156 |
MNasNet |
316 |
Xception |
157 |
MNASNet0_5 |
317 |
xception_aligned |
158 |
MNASNet0_75 |
318 |
xDeepFM |
159 |
MNASNet1_0 |
319 |
yolov5s |
160 |
MNASNet1_3 |
320 |
ZERO-DCE |
脚本转换工具支持Ubuntu 18.04、CentOS 7.6或EulerOS 2.8。
pip3 install pandas #pandas版本号需大于或等于1.2.4 pip3 install libcst