LinearQuant是对torch_npu接口torch_npu.npu_quant_matmul的封装类,完成A8W8、A4W4量化算子的矩阵乘计算。
torch_npu.contrib.module.LinearQuant(in_features, out_features, *, bias=True, offset=False, pertoken_scale=False, output_dtype=None)
x1(计算输入):Device侧的Tensor类型,数据类型支持INT8和INT32,其中INT32类型表示使用本接口进行INT4类型矩阵乘计算,INT32类型承载的是INT4数据,每个INT32数据存放8个INT4数据。数据格式支持ND,shape最少是2维,最多是6维。
一个Tensor类型的输出,代表量化matmul的计算结果:
如果output_dtype非以上数据类型,返回错误码。
进行(m,k)乘(k,n)的INT4类型矩阵乘计算时,需要输入INT32类型,shape为(m,k//8)(k,n//8)的数据,其中k与n都应是8的倍数。x1只能接受shape为(m,k//8)且数据排布连续的数据,weight只能接受shape为(n,k//8)且数据排布连续的数据(数据排布连续指数组中所有相邻的数,包括换行时内存地址连续;使用Tensor.is_contiguous返回值为true则表明tensor数据排布连续)。
在单算子模式下不支持使能高带宽的x2数据排布,因此不能调用use_internal_format_weight,如果想追求极致性能,请使用图模式
import torch import torch_npu import logging import os from torch_npu.contrib.module import LinearQuant x1 = torch.randint(-1, 1, (1, 512), dtype=torch.int8).npu() x2 = torch.randint(-1, 1, (128, 512), dtype=torch.int8).npu() scale = torch.randn(1, dtype=torch.float32).npu() offset = torch.randn(128, dtype=torch.float32).npu() bias = torch.randint(-1,1, (128,), dtype=torch.int32).npu() in_features = 512 out_features = 128 output_dtype = torch.int8 model = LinearQuant(in_features, out_features, bias=True, offset=True, output_dtype=output_dtype) model = model.npu() model.weight.data = x2 model.scale.data = scale model.offset.data = offset model.bias.data = bias // 接口内部调用npu_trans_quant_param功能 output = model(x1)
# int8输入场景 import torch import torch_npu import logging import os from torch_npu.contrib.module import LinearQuant x1 = torch.randint(-1, 1, (1, 512), dtype=torch.int8).npu() x2 = torch.randint(-1, 1, (128, 512), dtype=torch.int8).npu() scale = torch.randn(1, dtype=torch.float32).npu() offset = torch.randn(128, dtype=torch.float32).npu() bias = torch.randint(-1,1, (128,), dtype=torch.int32).npu() in_features = 512 out_features = 128 output_dtype = torch.int8 model = LinearQuant(in_features, out_features, bias=True, offset=True, output_dtype=output_dtype) model = model.npu() model.weight.data = x2 model.scale.data = scale model.offset.data = offset model.bias.data = bias output = model(x1) # int4输入场景 import torch import torch_npu import logging import os from torch_npu.contrib.module import LinearQuant # 用int32类型承载int4数据,实际int4 shape为x1:(1, 512) x2: (128, 512) x1 = torch.randint(-1, 1, (1, 64), dtype=torch.int32).npu() x2 = torch.randint(-1, 1, (128, 64), dtype=torch.int32).npu() scale = torch.randn(1, dtype=torch.float32).npu() bias = torch.randint(-1,1, (128,), dtype=torch.int32).npu() in_features = 512 out_features = 128 output_dtype = torch.float16 model = LinearQuant(in_features, out_features, bias=True, offset=False, output_dtype=output_dtype) model = model.npu() model.weight.data = x2 model.scale.data = scale model.bias.data = bias output = model(x1)
import torch import torch_npu import torchair as tng from torchair.ge_concrete_graph import ge_apis as ge from torchair.configs.compiler_config import CompilerConfig from torch_npu.contrib.module import LinearQuant import logging from torchair.core.utils import logger logger.setLevel(logging.DEBUG) import os import numpy as np os.environ["ENABLE_ACLNN"] = "true" config = CompilerConfig() npu_backend = tng.get_npu_backend(compiler_config=config) x1 = torch.randint(-1, 1, (1, 512), dtype=torch.int8).npu() x2 = torch.randint(-1, 1, (128, 512), dtype=torch.int8).npu() scale = torch.randn(1, dtype=torch.float32).npu() offset = torch.randn(128, dtype=torch.float32).npu() bias = torch.randint(-1,1, (128,), dtype=torch.int32).npu() in_features = 512 out_features = 128 output_dtype = torch.int8 model = LinearQuant(in_features, out_features, bias=True, offset=True, output_dtype=output_dtype) model = model.npu() model.weight.data = x2 model.scale.data = scale model.offset.data = offset if output_dtype != torch.bfloat16: #使能高带宽x2的数据排布功能 tng.experimental.inference.use_internal_format_weight(model) model.bias.data = bias model = torch.compile(model, backend=npu_backend, dynamic=False) output = model(x1)