TorchAir python层日志开启主要通过python中logger.setLevel( )函数实现,方便进行python层功能调试和问题定位。
支持的日志级别如下:
logger.setLevel的默认值为“logging.ERROR”,更详细的介绍请参见python官网logging模块。
import logging from torchair import logger logger.setLevel(logging.DEBUG)
python侧debug日志样例如下
[DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: arg1_1 [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, 1] npu:Tensor(arg1_1:0, dtype=DT_FLOAT, size=[s0, 1])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: arg2_1 [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(arg2_1:0, dtype=DT_FLOAT, size=[s0, s0])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: arg3_1 [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.int32, size=[s0, s0] npu:Tensor(arg3_1:0, dtype=DT_INT32, size=[s0, s0])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: aten.mul.Tensor [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 0: Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(arg2_1:0, dtype=DT_FLOAT, size=[s0, s0])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 1: Pack(meta:FakeTensor(dtype=torch.int32, size=[s0, s0] npu:Tensor(arg3_1:0, dtype=DT_INT32, size=[s0, s0])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Cast_1:0, dtype=DT_FLOAT, size=[s0, s0])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: aten.add.Tensor [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 0: Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, 1] npu:Tensor(arg1_1:0, dtype=DT_FLOAT, size=[s0, 1])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 1: Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Cast_1:0, dtype=DT_FLOAT, size=[s0, s0])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Add:0, dtype=DT_FLOAT, size=[s0, s0])) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: output [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 0: (Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Add:0, dtype=DT_FLOAT, size=[s0, s0])),) [DEBUG] TORCHAIR 2024-04-03 09:37:40 output (Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Add:0, dtype=DT_FLOAT, size=[s0, s0])),) [DEBUG] TORCHAIR 2024-04-03 09:37:41 runtime inputs [DEBUG] TORCHAIR 2024-04-03 09:37:41 input 0: <class 'int'>(4)