1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179 | #include "aclnn_gelu_operation.h"
#include "acl/acl.h"
#include "aclnnop/aclnn_gelu.h"
#include "aclnnop/aclnn_gelu_v2.h"
#include "utils/log.h"
#include "utils/utils.h"
const int DIM0 = 0;
const int DIM1 = 1;
const int DIM2 = 2;
const int DIM3 = 3;
GeluOperation::GeluOperation(const std::string &name, AclnnGeluParam param) : AclnnBaseOperation(name), param_(param)
{}
atb::Status GeluOperation::InferShape(
const atb::SVector<atb::TensorDesc> &inTensorDesc, atb::SVector<atb::TensorDesc> &outTensorDesc) const
{
LOG_INFO(opName_ + " InferShape start");
outTensorDesc.at(0).format = inTensorDesc.at(0).format;
outTensorDesc.at(0).dtype = inTensorDesc.at(0).dtype;
outTensorDesc.at(0).shape.dimNum = inTensorDesc.at(0).shape.dimNum;
if (inTensorDesc.at(0).shape.dimNum == DIM3) {
LOG_INFO("[input0 dimNum = 3] CHECK " + opName_ + " input shape: [input0] " +
std::to_string(inTensorDesc.at(0).shape.dims[DIM0]) + ", " +
std::to_string(inTensorDesc.at(0).shape.dims[DIM1]) + ", " +
std::to_string(inTensorDesc.at(0).shape.dims[DIM2]));
outTensorDesc.at(0).shape.dims[DIM0] = inTensorDesc.at(0).shape.dims[DIM0];
outTensorDesc.at(0).shape.dims[DIM1] = inTensorDesc.at(0).shape.dims[DIM1];
outTensorDesc.at(0).shape.dims[DIM2] = inTensorDesc.at(0).shape.dims[DIM2];
} else if (inTensorDesc.at(0).shape.dimNum == DIM2) {
LOG_INFO("[input0 dimNum = 2] CHECK " + opName_ + " input shape: [input0] " +
std::to_string(inTensorDesc.at(0).shape.dims[DIM0]) + ", " +
std::to_string(inTensorDesc.at(0).shape.dims[DIM1]));
outTensorDesc.at(0).shape.dims[DIM0] = inTensorDesc.at(0).shape.dims[DIM0];
outTensorDesc.at(0).shape.dims[DIM1] = inTensorDesc.at(0).shape.dims[DIM1];
} else {
LOG_ERROR(opName_ + " invalid dimNum = " + std::to_string(inTensorDesc.at(0).shape.dimNum));
}
LOG_INFO(opName_ + " InferShape end");
return atb::NO_ERROR;
}
uint32_t GeluOperation::GetInputNum() const
{
return 1; // gelu入参个数
}
uint32_t GeluOperation::GetOutputNum() const
{
return 1; // gelu出参个数
}
// 重写父类方法, 创建输入输出tensor,并存入VariantPack
atb::Status GeluOperation::CreateAclnnVariantPack(const atb::VariantPack &variantPack)
{
LOG_INFO(opName_ + " CreateAclnnVariantPack start");
auto ret = CreateAclnnInTensor(variantPack);
if (ret != 0) {
LOG_ERROR(opName_ + " CreateAclnnInTensor fail");
return atb::ERROR_INVALID_PARAM;
}
ret = CreateAclnnOutTensor(variantPack);
if (ret != 0) {
LOG_ERROR(opName_ + " CreateAclNNOutTensorVariantPack fail");
return atb::ERROR_INVALID_PARAM;
}
LOG_INFO(opName_ + " CreateAclnnVariantPack end");
return atb::NO_ERROR;
}
atb::Status GeluOperation::CreateAclnnInTensor(const atb::VariantPack &variantPack)
{
aclInTensors_.resize(GetInputNum());
for (size_t i = 0; i < aclInTensors_.size(); ++i) {
auto aclnnTensor = CreateAclnnTensor(variantPack.inTensors.at(i), i);
if (aclnnTensor->tensor == nullptr) {
LOG_ERROR(opName_ + " InTensor aclCreateTensor index " + std::to_string(i) + " fail");
return atb::ERROR_INTERNAL_ERROR;
}
aclInTensors_[i] = aclnnTensor;
}
return atb::NO_ERROR;
}
atb::Status GeluOperation::CreateAclnnOutTensor(const atb::VariantPack &variantPack)
{
aclOutTensors_.resize(GetOutputNum());
for (size_t i = 0; i < aclOutTensors_.size(); ++i) {
auto aclnnTensor = CreateAclnnTensor(variantPack.outTensors.at(i), i);
if (aclnnTensor->tensor == nullptr) {
LOG_ERROR(opName_ + " outTensor aclCreateTensor index " + std::to_string(i) + " fail");
return atb::ERROR_INTERNAL_ERROR;
}
LOG_INFO(opName_ + " input[" + std::to_string(i) + "] CreateAclnnTensor start");
aclOutTensors_[i] = aclnnTensor;
}
return atb::NO_ERROR;
}
atb::SVector<int64_t> GetCopyTensorStride(atb::Dims &tensorDims)
{
atb::SVector<int64_t> tmpStrides(tensorDims.dimNum, 1);
if (tensorDims.dimNum > 8) { // 8: tensor最大维度数量
LOG_ERROR("tensor's dimNum is larger than 8, GetCopyTensorStride failed.");
return tmpStrides;
}
for (int64_t i = static_cast<int64_t>(tensorDims.dimNum) - 2; i >= 0; i--) {
tmpStrides[i] = (tensorDims.dims[i + 1] * tmpStrides[i + 1]);
}
return tmpStrides;
}
std::shared_ptr<AclnnTensor> GeluOperation::CreateAclnnTensor(atb::Tensor atbTensor, size_t tensorIdx)
{
auto aclnnTensor = std::make_shared<AclnnTensor>();
aclnnTensor->tensorIdx = static_cast<int>(tensorIdx);
aclnnTensor->needUpdateTensorDataPtr = true;
aclnnTensor->atbTensor = atbTensor;
aclnnTensor->strides = GetCopyTensorStride(atbTensor.desc.shape);
// 创建Aclnn tensor
aclnnTensor->tensor = aclCreateTensor(atbTensor.desc.shape.dims,
atbTensor.desc.shape.dimNum,
atbTensor.desc.dtype,
aclnnTensor->strides.data(),
0,
atbTensor.desc.format,
atbTensor.desc.shape.dims,
atbTensor.desc.shape.dimNum,
atbTensor.deviceData);
return aclnnTensor;
}
// 重写父类方法, 创建workspace和aclexecutor
atb::Status GeluOperation::SetAclnnWorkspaceExecutor()
{
// 调用aclnn接口获取workspace大小
LOG_INFO(opName_ + " SetAclnnWorkspaceExecutor start");
if (param_.geluApproximate == -1) {
auto ret = aclnnGeluGetWorkspaceSize(aclInTensors_.at(0)->tensor, // self
aclOutTensors_.at(0)->tensor, // out
&workspaceSize_,
&aclExecutor_);
CHECK_RET(ret, opName_ + " aclnnGeluGetWorkspaceSize failed, ret: " + std::to_string(ret));
LOG_INFO(opName_ + " SetAclnnWorkspaceExecutor end, workspaceSize_: " + std::to_string(workspaceSize_));
return ret;
}
auto ret = aclnnGeluV2GetWorkspaceSize(aclInTensors_.at(0)->tensor, // x
param_.geluApproximate, // approximate
aclOutTensors_.at(0)->tensor, // y
&workspaceSize_,
&aclExecutor_);
CHECK_RET(ret, opName_ + " aclnnGeluV2GetWorkspaceSize failed, ret: " + std::to_string(ret));
LOG_INFO(opName_ + " SetAclnnWorkspaceExecutor end, workspaceSize_: " + std::to_string(workspaceSize_));
return ret;
}
// 重写父类方法, 执行aclnn算子
atb::Status GeluOperation::ExecuteAclnnOp(uint8_t *workspace, aclrtStream &stream)
{
// 调用aclnn算子进行算子下发
LOG_INFO(opName_ + " ExecuteAclnnOp start");
if (param_.geluApproximate == -1) {
auto ret = aclnnGelu(workspace, workspaceSize_, aclExecutor_, stream);
CHECK_RET(ret, opName_ + " ExecuteAclnnOp failed, ret: " + std::to_string(ret));
LOG_INFO(opName_ + " ExecuteAclnnOp end");
return ret;
}
auto ret = aclnnGeluV2(workspace, workspaceSize_, aclExecutor_, stream);
CHECK_RET(ret, opName_ + " aclnnGeluV2 failed, ret: " + std::to_string(ret));
LOG_INFO(opName_ + " ExecuteAclnnOp end");
return ret;
}
|