按元素做取小数计算。举例如下:
Frac(-258.41888) = -0.41888428;
Frac(5592.625) = 0.625。
1 2 | template <typename T, bool isReuseSource = false> __aicore__ inline void Frac(const LocalTensor<T>& dstTensor, const LocalTensor<T>& srcTensor) |
1 2 | template <typename T, bool isReuseSource = false> __aicore__ inline void Frac(const LocalTensor<T>& dstTensor, const LocalTensor<T>& srcTensor, const uint32_t calCount) |
1 2 | template <typename T, bool isReuseSource = false> __aicore__ inline void Frac(const LocalTensor<T>& dstTensor, const LocalTensor<T>& srcTensor, const LocalTensor<uint8_t>& sharedTmpBuffer) |
1 2 | template <typename T, bool isReuseSource = false> __aicore__ inline void Frac(const LocalTensor<T>& dstTensor, const LocalTensor<T>& srcTensor, const LocalTensor<uint8_t>& sharedTmpBuffer, const uint32_t calCount) |
由于该接口的内部实现中涉及复杂的数学计算,需要额外的临时空间来存储计算过程中的中间变量。临时空间支持开发者通过sharedTmpBuffer入参传入和接口框架申请两种方式。
接口框架申请的方式,开发者需要预留临时空间;通过sharedTmpBuffer传入的情况,开发者需要为tensor申请空间。临时空间大小BufferSize的获取方式如下:通过GetFracMaxMinTmpSize中提供的GetFracMaxMinTmpSize接口获取需要预留空间大小的上下限。
参数名 |
描述 |
---|---|
T |
操作数的数据类型。 |
isReuseSource |
是否允许修改源操作数。该参数预留,传入默认值false即可。 |
参数名 |
输入/输出 |
描述 |
---|---|---|
dstLocal |
输出 |
目的操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas推理系列产品AI Core,支持的数据类型为:half/float |
srcLocal |
输入 |
源操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 源操作数的数据类型需要与目的操作数保持一致。 Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas推理系列产品AI Core,支持的数据类型为:half/float |
sharedTmpBuffer |
输入 |
临时缓存。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 源操作数的数据类型需要与目的操作数保持一致。 用于Frac内部复杂计算时存储中间变量,由开发者提供。 临时空间大小BufferSize的获取方式请参考GetFracMaxMinTmpSize。 Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:uint8_t Atlas推理系列产品AI Core,支持的数据类型为:uint8_t |
calCount |
输入 |
实际计算数据元素个数,且calCount∈(0, srcTensor.GetSize()]。 |
无
Atlas A2训练系列产品/Atlas 800I A2推理产品
Atlas推理系列产品AI Core
#include "kernel_operator.h" template <typename srcType> class KernelFrac { public: __aicore__ inline KernelFrac(){} __aicore__ inline void Init(GM_ADDR srcGm, GM_ADDR dstGm, uint32_t srcSize) { srcGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(srcGm), srcSize); dstGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(dstGm), srcSize); pipe.InitBuffer(inQueueX, 1, srcSize * sizeof(srcType)); pipe.InitBuffer(outQueue, 1, srcSize * sizeof(srcType)); bufferSize = srcSize; } __aicore__ inline void Process() { CopyIn(); Compute(); CopyOut(); } private: __aicore__ inline void CopyIn() { AscendC::LocalTensor<srcType> srcLocal = inQueueX.AllocTensor<srcType>(); AscendC::DataCopy(srcLocal, srcGlobal, bufferSize); inQueueX.EnQue(srcLocal); } __aicore__ inline void Compute() { AscendC::LocalTensor<srcType> dstLocal = outQueue.AllocTensor<srcType>(); AscendC::LocalTensor<srcType> srcLocal = inQueueX.DeQue<srcType>(); AscendC::Frac<srcType, false>(dstLocal, srcLocal); outQueue.EnQue<srcType>(dstLocal); inQueueX.FreeTensor(srcLocal); } __aicore__ inline void CopyOut() { AscendC::LocalTensor<srcType> dstLocal = outQueue.DeQue<srcType>(); AscendC::DataCopy(dstGlobal, dstLocal, bufferSize); outQueue.FreeTensor(dstLocal); } private: AscendC::GlobalTensor<srcType> srcGlobal; AscendC::GlobalTensor<srcType> dstGlobal; AscendC::TPipe pipe; AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueueX; AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQueue; uint32_t bufferSize = 0; }; template <typename dataType> __aicore__ void kernel_frac_operator(GM_ADDR srcGm, GM_ADDR dstGm, uint32_t srcSize) { KernelFrac<dataType> op; op.Init(srcGm, dstGm, srcSize); op.Process(); } extern "C" __global__ __aicore__ void kernel_frac_operator(GM_ADDR srcGm, GM_ADDR dstGm, uint32_t srcSize) { kernel_frac_operator<half>(srcGm, dstGm, srcSize); }
输入数据(srcLocal): [ -258.41888 5592.625 -5312.416 ... 9423.014 -8336.825] 输出数据(dstLocal): [ -0.41888428 0.625 -0.41601562 ... 0.013671875 -0.8251953 ]