完成量化计算参数scale数据类型的转换。
npu_trans_quant_param(Tensor scale, Tensor? offset=None) -> Tensor
一个Tensor类型的输出,代表trans_quant_param的计算结果。
Atlas A2 训练系列产品
单算子调用: import torch import torch_npu import logging import os scale = torch.randn(16, dtype=torch.float32) offset = torch.randn(16, dtype=torch.float32) npu_out = torch_npu.npu_quant_matmul(scale.npu(), offset.npu()) 图模式: import torch import torch_npu import torchair as tng from torchair.ge_concrete_graph import ge_apis as ge from torchair.configs.compiler_config import CompilerConfig import logging from torchair.core.utils import logger logger.setLevel(logging.DEBUG) import os import numpy as np os.environ["ENABLE_ACLNN"] = "true" config = CompilerConfig() model = cpu_model.npu() npu_backend = tng.get_npu_backend(compiler_config=config) class MyModel(torch.nn.Module): def __init__(self): super().__init__() def forward(self,scale, offset): return torch_npu.npu_trans_quant_param(scale, offset) cpu_model = MyModel() scale = torch.randn(1, dtype=torch.float32) offset = torch.randn(1, dtype=torch.float32) model = torch.compile(cpu_model, backend=npu_backend, dynamic=True) npu_out = model(scale.npu(), offset.npu())